内容简介
bm266255 9787115404749 9787115422286 9787115399830 9787115403094
Spark数据分析
Cloudera公司数据科学家团队携手打造,教你用Spark进行大规模数据分析 基本信息
- 作者:
- 译者:
- 出版社:
- ISBN:9787115404749
- 上架时间:2015-10-23
- 出版日期:2015 年8月
- 开本:16开
- 页码:244
- 版次:1-1
- 所属分类:
内容简介
本书是使用Spark进行大规模数据分析的实战宝典,由大数据公司Cloudera的数据科学家撰写。四位作者首先结合数据科学和大数据分析的广阔背景讲解了Spark,然后介绍了用Spark和Scala进行数据处理的基础知识,接着讨论了如何将Spark用于机器学习,同时介绍了常见应用中几个常用的算法。此外还收集了一些更加新颖的应用,比如通过文本隐含语义关系来查询Wikipedia或分析基因数据。
本书适合从事大数据分析的各类专业人员阅读。
目录
推荐序 ix
译者序 xi
序 xiii
前言 xv
第1章 大数据分析 1
1.1 数据科学面临的挑战 2
1.2 认识Apache Spark 4
1.3 关于本书 5
第2章 用Scala和Spark进行数据分析 7
2.1 数据科学家的Scala 8
2.2 Spark 编程模型 9
2.3 记录关联问题 9
2.4 小试牛刀:Spark shell和SparkContext 10
2.5 把数据从集群上获取到客户端 15
2.6 把代码从客户端发送到集群 18
2.7 用元组和case class对数据进行结构化 19
2.8 聚合 23
2.9 创建直方图 24
2.10 连续变量的概要统计 25
2.11 为计算概要信息创建可重用的代码 26
2.12 变量的选择和评分简介 30
2.13 小结 31
第3章 音乐推荐和Audioscrobbler数据集 33
3.1 数据集 34
3.2 交替小二乘推荐算法 35
3.3 准备数据 37
3.4 构建一个模型 39
3.5 逐个检查推荐结果 42
3.6 评价推荐质量 43
3.7 计算AUC 44
3.8 选择超参数 46
3.9 产生推荐 48
3.10 小结 49
第4章 用决策树算法预测森林植被 51
4.1 回归简介 52
4.2 向量和特征 52
4.3 样本训练 53
4.4 决策树和决策森林 54
4.5 Covtype数据集 56
4.6 准备数据 57
4.7 第决策树 58
4.8 决策树的超参数 62
4.9 决策树调优 63
4.10 重谈类别型特征 65
4.11 随机决策森林 67
4.12 进行预测 69
4.13 小结 69
第5章 基于K均值聚类的网络流量异常检测 71
5.1 异常检测 72
5.2 K均值聚类 72
5.3 网络入侵 73
5.4 KDD Cup 1999数据集 73
5.5 初步尝试聚类 74
5.6 K 的选择 76
5.7 基于R的可视化 79
5.8 特征的规范化 81
5.9 类别型变量 83
5.10 利用标号的熵信息 84
5.11 聚类实战 85
5.12 小结 86
第6章 基于潜在语义分析算法分析维基百科 89
6.1 词项-文档矩阵 90
6.2 获取数据 91
6.3 分析和准备数据 92
6.4 词形归并 93
6.5 计算TF-IDF 94
6.6 奇异值分解 97
6.7 找出重要的概念 98
6.8 基于低维近似的查询和评分 101
6.9 词项-词项相关度 102
6.10 文档-文档相关度 103
6.11 词项-文档相关度 105
6.12 多词项查询 106
6.13 小结 107
第7章 用GraphX分析伴生网络 109
7.1 对MEDLINE文献引用索引的网络分析 110
7.2 获取数据 111
7.3 用Scala XML工具解析XML文档 113
7.4 分析MeSH主要主题及其伴生关系 114
7.5 用GraphX来建立一个伴生网络 116
7.6 理解网络结构 119
7.6.1 连通组件 119
7.6.2 度的分布 122
7.7 过滤噪声边 124
7.7.1 处理EdgeTriplet 125
7.7.2 分析去掉噪声边的子图 126
7.8 小世界网络 127
7.8.1 系和聚类系数 128
7.8.2 用Pregel计算平均路径长度 129
7.9 小结 133
第8章 纽约出租车轨迹的空间和时间数据分析 135
8.1 数据的获取 136
8.2 基于Spark的时间和空间数据分析 136
8.3 基于JodaTime和NScalaTime的时间数据处理 137
8.4 基于Esri Geometry API和Spray的地理空间数据处理 138
8.4.1 认识Esri Geometry API 139
8.4.2 GeoJSON简介 140
Spark高级数据分析+spark快速大数据分析+机器学习+Spark实践 下载 mobi epub pdf txt 电子书 格式