现代语音信号处理

现代语音信号处理 下载 mobi epub pdf 电子书 2025


简体网页||繁体网页
胡航 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2025-01-22

类似图书 点击查看全场最低价

图书介绍

出版社: 电子工业出版社
ISBN:9787121226250
版次:01
商品编码:11507239
包装:平装
丛书名: 工业和信息产业科技与教育专著出版资金资助出版
开本:16开
出版时间:2014-07-01
用纸:胶版纸
页数:440
正文语种:中文


相关图书





图书描述

内容简介

  本书系统介绍了语音信号处理的基础、原理、方法、应用、新理论、新成果与新技术,以及该研究领域的背景知识、研究现状、应用前景和发展趋势。
  全书分三篇共17章。第一篇语音信号处理基础,包括第1章绪论,第2章语音信号处理的基础知识;第二篇语音信号分析,包括第3章时域分析,第4章短时傅里叶分析,第5章倒谱分析与同态滤波,第6章线性预测分析,第7章语音信号的非线性分析,第8章语音特征参数检测与估计,第9章矢量量化,第10章隐马尔可夫模型;第三篇语音信号处理技术与应用,包括第11章语音编码,第12章语音合成,第13章语音识别,第14章说话人识别和语种辨识,第15章智能信息处理技术在语音信号处理中的应用,第16章语音增强,第17章基于麦克风阵列的语音信号处理。
  本书体系完整,结构严谨;系统性强,层次分明;内容深入浅出,原理阐述透彻;取材广泛,繁简适中;内容丰富而新颖;联系实际应用。

作者简介

胡航,博士,哈尔滨工业大学电子信息学院副教授,主要教授《信号与系统》、《数字信号处理》等课程,研究方向为现代语音信号处理。

目录

目 录
第一篇 语音信号处理基础

第1章 绪论 1
1.1 语音信号处理的发展历史 1
1.2 语音信号处理的主要研究内容及发展
概况 3
1.3 本书的内容 7
思考与复习题 8
第2章 语音信号处理的基础知识 9
2.1 概述 9
2.2 语音产生的过程 9
2.3 语音信号的特性 12
2.3.1 语言和语音的基本特性 12
2.3.2 语音信号的时间波形和频谱特性 13
2.3.3 语音信号的统计特性 15
2.4 语音产生的线性模型 16
2.4.1 激励模型 17
2.4.2 声道模型 18
2.4.3 辐射模型 20
2.4.4 语音信号数字模型 21
2.5 语音产生的非线性模型 22
2.5.1 FM-AM模型的基本原理 22
2.5.2 Teager能量算子 22
2.5.3 能量分离算法 23
2.5.4 FM-AM模型的应用 24
2.6 语音感知 24
2.6.1 听觉系统 24
2.6.2 神经系统 25
2.6.3 语音感知 26
思考与复习题 29

第二篇 语音信号分析

第3章 时域分析 30
3.1 概述 30
3.2 数字化和预处理 31
3.2.1 取样率和量化字长的选择 31
3.2.2 预处理 33
3.3 短时能量分析 34
3.4 短时过零分析 36
3.5 短时相关分析 39
3.5.1 短时自相关函数 39
3.5.2 修正的短时自相关函数 40
3.5.3 短时平均幅差函数 42
3.6 语音端点检测 42
3.6.1 双门限前端检测 43
3.6.2 多门限过零率前端检测 43
3.6.3 基于FM-AM模型的端点检测 43
3.7 基于高阶累积量的语音端点检测 44
3.7.1 噪声环境下的端点检测 44
3.7.2 高阶累积量与高阶谱 44
3.7.3 基于高阶累积量的端点检测 46
思考与复习题 48
第4章 短时傅里叶分析 50
4.1 概述 50
4.2 短时傅里叶变换 50
4.2.1 短时傅里叶变换的定义 50
4.2.2 傅里叶变换的解释 51
4.2.3 滤波器的解释 54
4.3 短时傅里叶变换的取样率 55
4.4 语音信号的短时综合 56
4.4.1 滤波器组求和法 56
4.4.2 FFT求和法 58
4.5 语谱图 59
思考与复习题 61
第5章 倒谱分析与同态滤波 62
5.1 概述 62
5.2 同态信号处理的基本原理 62
5.3 复倒谱和倒谱 63
5.4 语音信号两个卷积分量复倒谱的性质 64
5.4.1 声门激励信号 64
5.4.2 声道冲激响应序列 65
5.5 避免相位卷绕的算法 66
5.5.1 微分法 67
5.5.2 最小相位信号法 67
5.5.3 递推法 69
5.6 语音信号复倒谱分析实例 70
5.7 Mel频率倒谱系数 72
思考与复习题 73
第6章 线性预测分析 74
6.1 概述 74
6.2 线性预测分析的基本原理 74
6.2.1 基本原理 74
6.2.2 语音信号的线性预测分析 75
6.3 线性预测方程组的建立 76
6.4 线性预测分析的解法(1)―自相关和
协方差法 77
6.4.1 自相关法 78
6.4.2 协方差法 79
6.4.3 自相关和协方差法的比较 80
6.5 线性预测分析的解法(2)―格型法 81
6.5.1 格型法基本原理 81
6.5.2 格型法的求解 83
6.6 线性预测分析的应用―LPC谱估计和
LPC复倒谱 85
6.6.1 LPC谱估计 85
6.6.2 LPC复倒谱 87
6.6.3 LPC谱估计与其他谱分析方法的
比较 88
6.7 线谱对(LSP)分析 89
6.7.1 线谱对分析原理 89
6.7.2 线谱对参数的求解 91
6.8 极零模型 91
思考与复习题 93
第7章 语音信号的非线性分析 94
7.1 概述 94
7.2 时频分析 94
7.2.1 短时傅里叶变换的局限 95
7.2.2 时频分析 96
7.3 小波分析 97
7.3.1 概述 97
7.3.2 小波变换的定义 97
7.3.3 典型的小波函数 99
7.3.4 离散小波变换 100
7.3.5 小波多分辨分析与Mallat算法 100
7.4 基于小波的语音分析 101
7.4.1 语音分解与重构 101
7.4.2 清/浊音判断 102
7.4.3 语音去噪 102
7.4.4 听觉系统模拟 103
7.4.5 小波包变换在语音端点检测中的
应用 103
7.5 混沌与分形 104
7.6 基于混沌的语音分析 105
7.6.1 语音信号的混沌性 105
7.6.2 语音信号的相空间重构 106
7.6.3 语音信号的Lyapunov指数 108
7.6.4 基于混沌的语音、噪声判别 109
7.7 基于分形的语音分析 110
7.7.1 概述 110
7.7.2 语音信号的分形特征 111
7.7.3 基于分形的语音分割 112
思考与复习题 113
第8章 语音特征参数估计 114
8.1 基音估计 114
8.1.1 自相关法 115
8.1.2 并行处理法 117
8.1.3 倒谱法 118
8.1.4 简化逆滤波法 120
8.1.5 高阶累积量法 122
8.1.6 小波变换法 123
8.1.7 基音检测的后处理 124
8.2 共振峰估计 125
8.2.1 带通滤波器组法 125
8.2.2 DFT法 126
8.2.3 倒谱法 127
8.2.4 LPC法 129
8.2.5 FM-AM模型法 130
思考与复习题 131
第9章 矢量量化 132
9.1 概述 132
9.2 矢量量化的基本原理 133
9.3 失真测度 134
9.3.1 欧氏距离―均方误差 135
9.3.2 LPC失真测度 135
9.3.3 识别失真测度 137
9.4 最佳矢量量化器和码本的设计 137
9.4.1 矢量量化器最佳设计的两个条件 137
9.4.2 LBG算法 138
9.4.3 初始码书生成 138
9.5 降低复杂度的矢量量化系统 139
9.5.1 无记忆的矢量量化系统 140
9.5.2 有记忆的矢量量化系统 142
9.6 语音参数的矢量量化 144
9.7 模糊矢量量化 145
9.7.1 模糊集概述 146
9.7.2 模糊矢量量化 147
9.8 遗传矢量量化 148
9.8.1 遗传算法 148
9.8.2 遗传矢量量化 150
思考与复习题 151
第10章 隐马尔可夫模型 152
10.1 概述 152
10.2 隐马尔可夫模型的引入 153
10.3 隐马尔可夫模型的定义 155
10.4 隐马尔可夫模型三个问题的求解 156
10.4.1 概率的计算 157
10.4.2 HMM的识别 159
10.4.3 HMM的训练 160
10.4.4 EM算法 161
10.5 HMM的选取 162
10.5.1 HMM的类型选择 162
10.5.2 输出概率分布的选取 163
10.5.3 状态数的选取 163
10.5.4 初值选取 163
10.5.5 训练准则的选取 165
10.6 HMM应用与实现中的一些问题 166
10.6.1 数据下溢 166
10.6.2 多输出(观察矢量序列)情况 166
10.6.3 训练数据不足 167
10.6.4 考虑状态持续时间的HMM 168
10.7 HMM的结构和类型 170
10.7.1 HMM的结构 170
10.7.2 HMM的类型 172
10.7.3 按输出形式分类 173
10.8 HMM的相似度比较 174
思考与复习题 175

第三篇 语音信号处理技术与应用

第11章 语音编码 176
11.1 概述 176
11.2 语音信号的压缩编码原理 178
11.2.1 语音压缩的基本原理 178
11.2.2 语音通信中的语音质量 179
11.2.3 两种压缩编码方式 180
11.3 语音信号的波形编码 180
11.3.1 PCM及APCM 180
11.3.2 预测编码及自适应预测编码 183
11.3.3 ADPCM及ADM 185
11.3.4 子带编码(SBC) 187
11.3.5 自适应变换编码(ATC) 189
11.4 声码器 191
11.4.1 概述 191
11.4.2 声码器的基本结构 192
11.4.3 通道声码器 192
11.4.4 同态声码器 194
11.5 LPC声码器 195
11.5.1 LPC参数的变换与量化 196
11.5.2 LPC-10 197
11.5.3 LPC-10e 198
11.5.4 变帧率LPC声码器 199
11.6 各种常规语音编码方法的比较 200
11.6.1 波形编码的信号压缩技术 200
11.6.2 波形编码与声码器的比较 200
11.6.3 各种声码器的比较 201
11.7 基于LPC模型的混合编码 201
11.7.1 混合编码采用的技术 202
11.7.2 MPLPC 204
11.7.3 RPELPC 207
11.7.4 CELP 209
11.7.5 CELP的改进形式 211
11.7.6 基于分形码本的CELP 213
11.8 基于正弦模型的混合编码 214
11.8.1 正弦变换编码 215
11.8.2 多带激励(MBE)编码 215
11.9 极低速率语音编码 217
11.9.1 400~1.2kb/s数码率的声码器 217
11.9.2 识别-合成型声码器 218
11.10 语音编码的性能指标 219
11.11 语音编码的质量评价 221
11.11.1 主观评价方法 221
11.11.2 客观评价方法 222
11.11.3 主客观评价方法的结合 225
11.11.4 基于多重分形的语音质量评价 226
11.12 语音编码国际标准 227
11.13 语音编码与图像编码的关系 228
小结 229
思考与复习题 229
第12章 语音合成 231
12.1 概述 231
12.2 语音合成原理 232
12.2.1 语音合成的方法 232
12.2.2 语音合成的系统特性 234
12.3 共振峰合成 235
12.3.1 共振峰合成原理 235
12.3.2 共振峰合成实例 237
12.4 LPC合成 237
12.5 PSOLA语音合成 239
12.5.1 概述 239
12.5.2 PSOLA的原理 240
12.5.3 PSOLA的实现 240
12.5.4 PSOLA的改进 242
12.5.5 PSOLA语音合成系统的发展 243
12.6 文语转换系统 243
12.6.1 组成与结构 243
12.6.2 文本分析 244
12.6.3 韵律控制 245
12.6.4 语音合成 248
12.6.5 TTS系统的一些问题 248
12.7 基于HMM的参数化语音合成 249
12.8 语音合成的研究现状和发展趋势 253
12.9 语音合成硬件简介 255
思考与复习题 256
第13章 语音识别 257
13.1 概述 257
13.2 语音识别原理 260
13.3 动态时间规整 264
13.4 基于有限状态矢量量化的语音识别 266
13.5 孤立词识别系统 267
13.6 连接词识别 270
13.6.1 基本原理 270
13.6.2 基于DTW的连接词识别 271
13.6.3 基于HMM的连接词识别 273
13.6.4 基于分段K-均值的最佳词串分割及
模型训练 273
13.7 连续语音识别 274
13.7.1 连续语音识别存在的困难 274
13.7.2 连续语音识别的训练及识别方法 275
13.7.3 连续语音识别的整体模型 276
13.7.4 基于HMM统一框架的大词汇非特定
人连续语音识别 277
13.7.5 声学模型 278
13.7.6 语言学模型 280
13.7.7 最优路径搜索 282
13.8 说话人自适应 284
13.8.1 MAP算法 285
13.8.2 基于变换的自适应方法 285
13.8.3 基于说话人分类的自适应方法 286
13.9 鲁棒的语音识别 287
13.10 关键词确认 289
13.11 可视语音识别 291
13.11.1 概述 291
13.11.2 机器自动唇读 291
13.11.3 双模态语音识别 293
13.12 语音理解 296
13.12.1 MAP语义解码 297
13.12.2 语义结构的表示 297
13.12.3 意图解码器 298
小结 299
思考与复习题 299
第14章 说话人识别 300
14.1 概述 300
14.2 特征选取 301
14.2.1 说话人识别所用的特征 301
14.2.2 特征类型的优选准则 302
14.2.3 常用的特征参数 303
14.3 说话人识别系统 303
14.3.1 说话人识别系统的结构 303
14.3.2 说话人识别的基本方法概述 304
14.4 说话人识别系统实例 305
14.4.1 DTW型说话人识别系统 305
14.4.2 应用VQ的说话人识别系统 306
14.5 基于HMM的说话人识别 307
14.6 基于GMM的说话人识别 310
14.7 说话人识别中需进一步研究的问题 312
14.8 语种辨识 313
思考与复习题 316
第15章 智能信息处理技术在语音信号
处理中的应用 317
15.1 人工神经网络 317
15.1.1 概述 317
15.1.2 神经网络的基本概念 319
15.2 神经网络的模型结构 320
15.2.1 单层感知机 320
15.2.2 多层感知机 321
15.2.3 自组织映射神经网络 323
15.2.4 时延神经网络 324
15.2.5 循环神经网络 325
15.3 神经网络与传统方法的结合 325
15.3.1 概述 325
15.3.2 神经网络与DTW 326
15.3.3 神经网络与VQ 326
15.3.4 神经网络与HMM 327
15.4 神经网络语音识别 328
15.4.1 静态语音识别 328
15.4.2 连续语音识别 330
15.5 基于神经网络的说话人识别 330
15.6 基于神经网络的语音信号非线性预测
编码 332
15.6.1 语音信号的非线性预测 332
15.6.2 基于MLP的非线性预测编码 333
15.6.3 基于RNN的非线性预测编码 334
15.7 基于神经网络的语音合成 335
15.8 支持向量机 336
15.8.1 概述 336
15.8.2 支持向量机的基本原理 337
15.9 基于支持向量机的语音分类识别 339
15.10 基于支持向量机的说话人识别 340
15.10.1 基于支持向量机的说话人辨认 340
15.10.2 基于支持向量机的说话人确认 340
15.11 基于混沌神经网络的语音识别 342
15.11.1 混沌神经网络 342
15.11.2 基于混沌神经网络的语音识别 342
15.12 分形在语音识别中的应用 344
15.13 智能优化算法在语音信号处理中的
应用 344
15.14 各种智能信息处理技术的融合与
集成 346
15.14.1 模糊系统与神经网络的融合 347
15.14.2 神经网络与遗传算法的融合 347
15.14.3 模糊逻辑、神经网络及遗传算法的
融合 348
15.14.4 神经网络、模糊逻辑及混沌的
融合 349
15.14.5 混沌与遗传算法的融合 349
思考与复习题 350
第16章 语音增强 351
16.1 概述 351
16.2 语音、人耳感知及噪声的特性 352
16.3 滤波器法 354< 现代语音信号处理 下载 mobi epub pdf txt 电子书 格式

现代语音信号处理 mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2025

现代语音信号处理 下载 mobi pdf epub txt 电子书 格式 2025

现代语音信号处理 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

还可以

评分

现代语音信号处理

评分

不错,适合学习!内容很多

评分

很不错的书籍!!!!

评分

书有些薄

评分

愉快的 购物

评分

各方面都讲了一点,可以全面了解一下。具体学习的话,还得针对每章节,找对应书籍才行。

评分

有点难,还没看完

评分

此书对于研究语音解析甚是有用

类似图书 点击查看全场最低价

现代语音信号处理 mobi epub pdf txt 电子书 格式下载 2025


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2025 book.teaonline.club All Rights Reserved. 图书大百科 版权所有