数据仓库与数据挖掘实践 [Data Warehouse and Data Mining Practice and Application]

数据仓库与数据挖掘实践 [Data Warehouse and Data Mining Practice and Application] 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
李春葆,李石君,李筱驰 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-12-26

类似图书 点击查看全场最低价

图书介绍

出版社: 电子工业出版社
ISBN:9787121244926
版次:1
商品编码:11581195
包装:平装
外文名称:Data Warehouse and Data Mining Practice and Application
开本:16开
出版时间:2014-11-01
用纸:胶版纸
页数:355
字数:588800
正文


相关图书





图书描述

编辑推荐

  《数据仓库与数据挖掘实践》力求繁中取简,让读者易学易懂:信息系统安全等级保护标准比较多,覆盖了等级保护的各个阶段,并且对每个保护等级都做了详细的规定和描述,阅读起来难免有些眼花缭乱,不易理解和掌握。本书对相关标准进行了梳理,主要以第三级系统安全保护为主线来介绍等级保护的原理和方法,为进一步掌握和运用相关标准打下良好的基础。

内容简介

  《数据仓库与数据挖掘实践》系统地介绍了数据仓库和数据挖掘技术,全本由两部分组成,第1章到第3章介绍数据仓库的基本概念和相关技术,第4章到第11章介绍数据挖掘的基本概念和各种算法,包括数据仓库构建、OLAP技术、分类方法、聚类方法、关联分析、序列模式挖掘方法、回归和时序分析、粗糙集理论、文本挖掘、Web挖掘和空间数据挖掘方法等。
  《数据仓库与数据挖掘实践》既注重原理,又注重实践,配有大量图表、示例和练习题,内容丰富,概念讲解清楚,表达严谨,逻辑性强,语言精练,可读性好。
  《数据仓库与数据挖掘实践》既便于教师课堂讲授,又便于自学者阅读。适合作为高等院校高年级学生和研究生“数据仓库和数据挖掘”或“数据挖掘算法”课程的教材。

作者简介

  李春葆,武汉大学计算机学院教授,主持和参加3S系统集成关键技术的研究(国家自然科学基金重点科技攻关项目,49631050)、城市地理信息系统标准规范的研究(国家测绘局项目)、伊藤算法及其在动态仿真优化中的理论研究(60873114/F020102)、湖北省财政厅三查管理信息系统、湖北省财政厅外汇管理信息系统、湖北省财政厅财政监督管理信息系统、武汉英华ERP系统等项目。

内页插图

目录

第1章 数据仓库概述
1.1 数据仓库及其历史
1.1.1 数据库技术的发展
1.1.2 什么是数据仓库
1.2 数据仓库系统及其开发工具
1.2.1 数据仓库系统的组成
1.2.2 ETL
1.2.3 数据仓库和数据集市的关系
1.2.4 元数据及其管理
1.3 数据仓库系统开发工具
1.4 数据仓库与操作型数据库的关系
1.4.1 从数据库到数据仓库
1.4.2 数据仓库为什么是分离的
1.4.3 数据仓库与操作型数据库的对比
1.4.4 ODS
1.5 商务智能与数据仓库的关系
练习题1
思考题1

第2章 数据仓库设计
2.1 数据仓库设计概述
2.1.1 数据仓库设计原则
2.1.2 数据仓库构建模式
2.1.3 数据仓库设计步骤
2.2 数据仓库的规划和需求分析
2.2.1 数据仓库的规划
2.2.2 数据仓库的需求分析
2.3 数据仓库的建模
2.3.1 多维数据模型及相关概念
2.3.2 多维数据模型的实现
2.3.3 数据仓库建模的主要工作
2.3.4 几种常见的基于关系数据库的多维数据模型
2.4 数据仓库的物理模型设计
2.4.1 确定数据的存储结构
2.4.2 确定索引策略
2.4.3 确定存储分配
2.5 数据仓库的部署和维护
2.5.1 数据仓库的部署
2.5.2 数据仓库的维护
2.6 一个简单的数据仓库SDWS设计示例
2.6.1 SDWS的需求分析
2.6.2 SDWS的建模
2.6.3 基于SQLServer2008设计SDWS
练习题2
思考题2

第3章 OLAP技术
3.1 OLAP概述
3.1.1 什么是OLAP
3.1.2 OLAP技术的特性
3.1.3 OLAP和OLTP的区别
3.1.4 数据仓库与OLAP的关系
3.1.5 OLAP分类
3.2 OLAP的多维数据模型
3.2.1 多维数据模型的定义
3.2.2 OLAP的基本分析操作
3.2.3 一个简单的多维数据模型
3.3 OLAP实现
3.3.1 数据立方体的有效计算
3.3.2 索引OLAP数据
3.3.3 OLAP查询的有效处理
练习题3
思考题3

第4章 数据挖掘概述
4.1 什么是数据挖掘
4.1.1 数据挖掘的定义
4.1.2 数据挖掘的知识表示
4.1.3 数据挖掘的主要任务
4.1.4 数据挖掘的发展
4.1.5 数据挖掘的对象
4.1.6 数据挖掘的分类
4.1.7 数据挖掘与数据仓库及OLAP的关系
4.1.8 数据挖掘的应用
4.2 数据挖掘系统
4.2.1 数据挖掘系统的结构
4.2.2 数据挖掘系统的设计
4.2.3 常用的数据挖掘系统及其发展
4.3 数据挖掘过程
4.3.1 数据挖掘步骤
4.3.2 数据清理
4.3.3 数据集成
4.3.4 数据变换
4.3.5 数据归约
4.3.6 离散化和概念分层生成
4.3.7 数据挖掘的算法
4.4 数据挖掘的未来展望
练习题4
思考题4

第5章 关联分析
5.1 关联分析的概念
5.1.1 事务数据库
5.1.2 关联规则及其度量
5.1.3 频繁项集
5.1.4 挖掘关联规则的基本过程
5.2 Apriori算法
5.2.1 Apriori性质
5.2.2 Apriori算法
5.2.3 由频繁项集产生关联规则
5.2.4 提高Apriori算法的有效性
5.2.5 非二元属性的关联规则挖掘
5.3 频繁项集的紧凑表示
5.3.1 最大频繁项集
5.3.2 频繁闭项集
5.4 FP-growth算法
5.4.1 FP-growth算法框架
5.4.2 FP树构造
5.4.3 由FP树产生频繁项集
5.5 多层关联规则的挖掘
5.5.1 多层关联规则的挖掘概述
5.5.2 多层关联规则的挖掘算法
5.5.3 多维关联规则
5.6 其他类型的关联规则
5.6.1 基于约束的关联规则
5.6.2 负关联规则
5.7 SQLServer挖掘关联规则的示例
5.7.1 建立DM数据库
5.7.2 建立关联挖掘项目
5.7.3 部署关联挖掘项目并浏览结果
练习题5
思考题5

第6章 序列模式挖掘
6.1 序列模式挖掘概述
6.1.1 序列数据库
6.1.2 序列模式挖掘算法
6.2 Apriori类算法
6.2.1 AprioriAll算法
6.2.2 AprioriSome算法
6.2.3 DynamicSome算法
6.2.4 GSP算法
6.2.5 SPADE算法
6.3 模式增长框架的序列挖掘算法
6.3.1 FreeSpan算法
6.3.2 PrefixSpan算法
练习题6
思考题6

第7章 分类方法
7.1 分类过程
7.1.1 学习阶段
7.1.2 分类阶段
7.2 k-最邻近分类算法
7.3 决策树分类算法
7.3.1 决策树
7.3.2 建立决策树的ID3算法
7.3.3 建立决策树的C4.5 算法
7.4 贝叶斯分类算法
7.4.1 贝叶斯分类概述
7.4.2 朴素贝叶斯分类
7.4.3 树增强朴素贝叶斯分类
7.5 神经网络算法
7.5.1 生物神经元和人工神经元
7.5.2 人工神经网络
7.5.3 前馈神经网络用于分类
7.5.4 SQLServer中神经网络分类示例
7.6 支持向量机
7.6.1 线性可分时的二元分类问题
7.6.2 线性不可分时的二元分类问题
练习题7
思考题7

第8章 回归分析和时序挖掘
8.1 线性和非线性回归分析
8.1.1 一元线性回归分析
8.1.2 多元线性回归分析
8.1.3 非线性回归分析
8.2 逻辑回归分析
8.2.1 逻辑回归原理
8.2.2 逻辑回归模型
8.2.3 SQL Server中逻辑回归分析示例
8.3 时序分析模型
8.3.1 时序分析概述
8.3.2 时序预测的常用方法
8.3.3 回归分析与时序分析的关系
8.3.4 确定性时序模型
8.3.5 随机时序模型
8.3.6 SQL Server建立随机时序模型示例
8.4 时序的相似性搜索
8.4.1 相似性搜索的概念
8.4.2 完全匹配
8.4.3 基于离散傅里叶变换的子序列匹配
8.4.4 基于规范变换的子序列匹配
练习题8
思考题8

第9章 粗糙集理论
9.1 粗糙集理论概述
9.1.1 粗糙集理论的产生
9.1.2 粗糙集理论的特点
9.1.3 粗糙集理论在数据挖掘中的应用
9.2 粗糙集理论中的基本概念
9.2.1 集合的基本概念
9.2.2 信息系统和粗糙集
9.2.3 分类的近似度量
9.3 信息系统的属性约简
9.3.1 约简和核
9.3.2 分辨矩阵求核
9.4 决策表及其属性约简
9.4.1 决策表及相关概念
9.4.2 决策表的属性约简算法
9.5 决策表的值约简及其算法
9.5.1 决策规则及其简化
9.5.2 决策规则的极小化
9.6 粗糙集在数据挖掘中的应用示例
练习题9
思考题9

第10章 聚类方法
10.1 聚类概述
10.1.1 什么是聚类
10.1.2 相似性测度
10.1.3 聚类过程
10.1.4 聚类算法的评价
10.1.5 聚类方法的分类
10.1.6 聚类分析在数据挖掘中的应用
10.1.7 聚类算法的要求
10.2 基于划分的聚类算法
10.2.1 k-均值算法
10.2.2 k-中心点算法
10.3 基于层次的聚类算法
10.3.1 层次聚类算法概述
10.3.2 DIANA算法和AGNES算法
10.3.3 BIRCH算法
10.3.4 CURE算法
10.3.5 ROCK算法
10.3.6 Chameleon算法
10.4 基于密度的聚类算法
10.4.1 DBSCAN算法
10.4.2 OPTICS算法
10.5 基于网格的聚类算法
10.5.1 STING算法
10.5.2 Wave Cluster算法
10.5.3 CLIQUE算法
10.6 基于模型的聚类算法
10.6.1 EM算法
10.6.2 COBWEB算法
10.7 离群点分析
10.7.1 离群点概述
10.7.2 常见的离群点检测方法
练习题10
思考题10

第11章 其他挖掘方法
11.1 文本挖掘
11.1.1 文本挖掘概述
11.1.2 数据预处理技术
11.1.3 文本结构分析
11.1.4 文本分类
11.1.5 文本聚类
11.1.6 文本摘要
11.1.7 文本关联分析
11.2 Web挖掘
11.2.1 Web挖掘概述
11.2.2 Web结构挖掘
11.2.3 Web内容挖掘
11.2.4 Web使用挖掘
11.2.5 Web挖掘的发展方向
11.3 空间数据挖掘
11.3.1 空间数据概述
11.3.2 空间数据立方体和空间OLAP
11.3.3 空间数据挖掘方法
练习题11
思考题11
附录A常用的优化方法
参考文献

前言/序言


数据仓库与数据挖掘实践 [Data Warehouse and Data Mining Practice and Application] 下载 mobi epub pdf txt 电子书 格式

数据仓库与数据挖掘实践 [Data Warehouse and Data Mining Practice and Application] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

数据仓库与数据挖掘实践 [Data Warehouse and Data Mining Practice and Application] 下载 mobi pdf epub txt 电子书 格式 2024

数据仓库与数据挖掘实践 [Data Warehouse and Data Mining Practice and Application] 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

非常的好!!!

评分

这是本2014年的书,不涉及图数据库挖掘只涉及关系型数据库建设与挖掘。对于当下两者融合的情况,有指导意义。比看一本厚书效率来得高

评分

很不错? 讲解的很清楚 适合数据挖掘入门的朋友看

评分

工作用,没毛病

评分

搞活动时买比较划算。

评分

咦,我什么时候买了这本书

评分

东西还是不错的还是值得购买的

评分

送货很快,但是这次的书皮有点褶皱,不过里面的内容没问题,就不介意了

评分

用的是sql server,概念讲得还算清楚,但是谁会用sql server建数据仓库呢

类似图书 点击查看全场最低价

数据仓库与数据挖掘实践 [Data Warehouse and Data Mining Practice and Application] mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.teaonline.club All Rights Reserved. 图书大百科 版权所有