純粹數學與應用數學專著:隨機動力係統導論(英文) [An Introduction to Stochastic Dynamics]

純粹數學與應用數學專著:隨機動力係統導論(英文) [An Introduction to Stochastic Dynamics] 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
段金橋 著



點擊這裡下載
    

想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-12-23

類似圖書 點擊查看全場最低價


圖書介紹

齣版社: 科學齣版社
ISBN:9787030438577
版次:1
商品編碼:11682525
包裝:平裝
叢書名: 純粹數學與應用數學專著
外文名稱:An Introduction to Stochastic Dynamics
開本:16開
齣版時間:2015-01-01
用紙:膠版紙
頁數:283
正文語種:英文


相關圖書





圖書描述

內容簡介

  隨機動力係統是一個入門較難的新興領域。
  《純粹數學與應用數學專著:隨機動力係統導論(英文)》是這個領域的一個較為通俗易懂的引論。
  在《純粹數學與應用數學專著:隨機動力係統導論(英文)》的第一部分,作者從簡單的隨機動力係統實際例子齣發,引導讀者迴顧概率論和白噪聲的基本知識,深入淺齣地介紹隨機微積分,然後自然地展開隨機微分方程的討論。

目錄

Chapter 1 Introduction
1.1 Examples of deterministic dynamical systems
1.2 Examples of stochastic dynamical systems
1.3 Mathematical modeling with stochastic differential equations
1.4 Outline of this book
1.5 Problems

Chapter 2 Background in Analysis and Probability
2.1 Euclidean space
2.2 Hilbert, Banach and metric spaces
2.3 Taylor expansions
2.4 Improper integrals and Cauchy principal values
2.5 Some useful inequalities
2.5.1 Young's inequality
2.5.2 Cronwall inequality
2.5.3 Cauchy-Schwaxz inequality
2.5.4 HSlder inequality
2.5.5 Minkowski inequality
2.6 HSlder spaces, Sobolev spaces and related inequalities
2.7 Probability spaces
2.7.1 Scalar random variables
2.7.2 Random vectors
2.7.3 Gaussian random variables
2.7.4 Non-Gaussian random variables
2.8 Stochastic processes
2.9 Coovergence concepts
2.10 Simulation
2.11 Problems

Chapter 3 Noise
3.1 Brownian motion
3.1.1 Brownian motion in R1
3.1.2 Brownian motion in Rn~
3.2 What is Gaussian white noise
3.3* A mathematical model for Gaussian white noise
3.3.1 Generalized derivatives
3.3.2 Gaussian white noise
3.4 Simulation
3.5 Problems

Chapter 4 A Crash Course in Stochastic Differential Equations
4.1 Differential equations with noise
4.2 Riemann-Stieltjes integration
4.3 Stochastic integration and stochastic differential equations
4.3.1 Motivation
4.3.2 Definition of It5 integral
4.3.3 Practical calculations
4.3.4 Stratonovich integral
4.3.5 Examples
4.3.6 Properties of It6 integrals
4.3.7 Stochastic differential equations
4.3.8 SDEs in engineering and science literature
4.3.9 SDEs with two-sided Brownian motions
4.4 It's formula
4.4.1 Motivation for stochasticChain rules
4.4.2 ItS's formula in scalar case
4.4.3 It6's formula in vector case
4.4.4 Stochastic product rule and integration by parts
4.5 Linear stochastic differential equations
4.6 Nonlinear stochastic differential equations
4.6.1 Existence, uniqueness and smoothness
4.6.2 Probability measure px and expectation Ex associated with an SDE
4.7 Conversion between It5 and Stratonovich stochastic differential equations
4.7.1 Scalar SDEs
4.7.2 SDE systems
4.8 Impact of noise on dynamics
4.9 Simulation
4.10 Problems

Chapter 5 Deterministic Quantities for Stochastic Dynamics
5.1 Moments
5.2 Probability density functions
5.2.1 Scalar Fokker-Planck equations
5.2.2 Multidimensional Fokker-Planck equations
5.2.3 Existence and uniqueness for Fokker-Planck equations
5.2.4 Likelihood for transitions between different dynamical regimes under uncertainty
5.3 Most probable phase portraits
5.3.1 Mean phase portraits
5.3.2 Almost sure phase portraits
5.3.3 Most probable phase portraits
5.4 Mean exit time
5.5 Escape probability
5.6 Problems

Chapter 6 Invariant Structures for Stochastic Dynamics
6.1 Deterministic dynamical systems
6.1.1 Concepts for deterministic dynamical systems
6.1.2 The Haxtman-Grobman theorem
6.1.3 Invariant sets
6.1.4 Differentiable manifolds
6.1.5 Deterministic invariant manifolds
6.2 Measurable dynamical systems
6.3 Random dynamical systems
6.3.1 Canonical sample spaces for SDEs
6.3.2 Wiener shift
6.3.3 Cocycles and random dynamical systems
6.3.4 Examples of cocycles
6.3.5 Structural stability and stationary orbits
6.4 Linear stochastic dynamics
6.4.1 Oseledets' multiplicative ergodic theorem and Lyapunov exponents"
6.4.2 A stochastic Hartman-Grobman theorem
6.5* Random invariant manifolds
6.5.1 Definition of random invariant manifolds
6.5.2 Converting SDEs to RDEs
6.5.3 Local random pseudo-stable and pseudo-unstable manifolds
6.5.4 Local random stable, unstable and center manifolds
6.6 Problems

Chapter 7 Dynamical Systems Driven by Non-Gaussian Levy Motions
7.1 Modeling via stochastic differential equations with Levy motions
7.2 Levy motions
7.2.1 Functions that have one-side limits
7.2.2 Levy-Ito decomposition
7.2.3 Levy-Khintchine formula
7.2.4 Basic properties of Levy motions
7.3 s-stable Levy motions
7.3.1 Stable random variables
7.3.2 a-stable Levy motions in R1
7.3.3 a-stable Levy motion in Rn
7.4 Stochastic differential equations with Levy motions
7.4.1 Stochastic integration with respect to Levy motions
7.4.2 SDEs with Levy motions
7.4.3 Generators for SDEs with Levy motion
7.5 Mean exit time
7.5.1 Mean exit time for a-stable Levy motion
7.5.2 Mean exit time for SDEs with a-stable Levy motion
7.6 Escape probability and transition phenomena
7.6.1 Balayage-Dirichlet problem for escape probability
7.6.2 Escape probability for a-stable Levy motion
7.6.3 Escape probability for SDEs with a-stable Levy motion
7.7 Fokker-Planck equations
7.7.1 Fokker-Planck equations in R1
7.7.2 Fokker-Planck equations in Rn
7.8 Problems

Hints and Solutions
Further Readings
References
Index
Color Pictures

精彩書摘

  《純粹數學與應用數學專著:隨機動力係統導論(英文)》:
  Chapter 1
  Introduction
  Noisy fluctuations are abundant in complex systems. In some cases, noise is not negligible, whereas in some other situations, noise could even be beneficial. It is desirable to have a better understanding of the impact of noise on dynamical evo?lution of complex systems. In other words, it becomes crucial to take randomness into account in mathematical modeling of complex phenomena under uncertainty.
  In 1908, Langevin devised a stochastic differential equation for the motion of Brownian particles in a fluid, under random impacts of surrounding fluid molecules. This stochastic differential equation, although important for understanding Brownian motion, went largely unnoticed in the mathematical community until after stochastic calculus emerged in the late 1940s. Introductory books on stochastic differential equations (SDEs) include [8,88,213].
  The goal for this book is to examine and present select dynamical systems concepts, tools, and methods for understanding solutions of SDEs. To this end, we also need basic information about deterministic dynamical systems modeled by ordinary differential equations (ODEs), as presented in the first couple of chapters in one of the references [110,290].
  In this introductory chapter, we present a few examples of deterministic and stochastic dynamical systems, then briefly outline the contents of this book.
  1.1 Examples of deterministic dynamical systems
  We recall a few examples of deterministic dynamical systems, where short time-scale forcing and nonlinearity can affect dynamics in a profound way.
  Example 1.1 A double-well system.
  Consider a one-dimensional dynamical system x = x - x3. It has three equilib?rium states, -1,0 and 1,at which the vector field x - x3 is zero. Observe that
  Note that x = x - x3 = -4,where the potential function V(x) = -gx2 + ^x4 has two minimal values (sometimes called “wells”),see Figure 1.1.
  Figure 1.1 Plot of
  A solution curve, or orbit, or trajectory, starting with x(0) = xo in (-1,0), decreases in time (because 士 < 0 on this interval) and approaches the equilibrium state - 1 as t ^ +oo, whereas an orbit starting with x(0) = xo in (-oo, -1), increases in time (because x > 0 on this interval) and approaches the equilibrium state - 1 as t +oo. Thus the equilibrium point {-1} is a stable equilibrium state and it is an attractor, i.e., it attracts nearby orbits. Likewise {1} is also an attractor. But the equilibrium state {0} is unstable and is called an repeller. See Figure 1.2 for a few representative solutions curves.
  An orbit starting near one equilibrium state {-1} can not go anywhere near the other equilibrium state {1}, and vice versa. There is no transition between these two stable states.
  If we only look at the solution curves in the state space, E1, wherestate xlives,
  we get a state portrait, or as often called, a phase portrait.
  ……

前言/序言


純粹數學與應用數學專著:隨機動力係統導論(英文) [An Introduction to Stochastic Dynamics] 下載 mobi epub pdf txt 電子書 格式

純粹數學與應用數學專著:隨機動力係統導論(英文) [An Introduction to Stochastic Dynamics] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

純粹數學與應用數學專著:隨機動力係統導論(英文) [An Introduction to Stochastic Dynamics] 下載 mobi pdf epub txt 電子書 格式 2024

純粹數學與應用數學專著:隨機動力係統導論(英文) [An Introduction to Stochastic Dynamics] 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

評分

評分

評分

評分

評分

評分

評分

評分

類似圖書 點擊查看全場最低價

純粹數學與應用數學專著:隨機動力係統導論(英文) [An Introduction to Stochastic Dynamics] mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.teaonline.club All Rights Reserved. 圖書大百科 版權所有