内容简介
《数据分析(第2版)》介绍了数据分析的基本内容与方法,其特点是既重视数据分析的基本理论与方法的介绍,又强调应用计算机软件SAS进行实际分析和计算能力的培养。主要内容有:数据描述性分析、非参数秩方法、回归分析、主成分分析与因子分析、判别分析、聚类分析、时间序列分析以及常用数据分析方法的SAS过程简介。
《数据分析(第2版)》每章末附有大量实用、丰富的习题,并要求学生独立上机完成。
《数据分析(第2版)》可作为高等院校信息科学及数理统计专业的本科生教材,也可供有关专业的研究生及工程技术人员参考。
目录
第1章 数据描述性分析
1.1 数据的数字特征
1.1.1 均值、方差等数字特征
1.1.2 中位数、分位数、三均值与极差
1.2 数据的分布
1.2.1 直方图、经验分布函数与QQ图
1.2.2 茎叶图、箱线图及五数总括
1.2.3 正态性检验与分布拟合检验
1.3 多元数据的数字特征与相关分析
1.3.1 二元数据的数字特征及相关系数
1.3.2 多元数据的数字特征及相关矩阵
1.3.3 总体的数字特征及相关矩阵
习题
第2章 非参数秩方法
2.1 两种处理方法比较的秩检验
2.1.1 两种处理方法比较的随机化模型及秩的零分布
2.1.2 Wilcoxon秩和检验
2.1.3 总体模型的wilcoxon秩和检验
2.1.4 Smirnov检验
2.2 成对分组设计下两种处理方法的比较
2.2.1 符号检验
2.2.2 Wilcoxon符号秩检验
2.2.3 分组设计下两处理方法比较的总体模型
2.3 多种处理方法比较的Kruskal-Wallis检验
2.3.1 多种处理方法比较中秩的定义及Kruskal_Wallis统计量
2.3.2 Kruskal-Wallis统计量的零分布
2.4 分组设计下多种处理方法的比较
2.4.1 分组设计下秩的定义及其零分布
2.4.2 Friedanan检验
2.4.3 改进的Friedman检验
习题
第3章 回归分析
3.1 线性回归模型
3.1.1 线性回归模型及其矩阵表示
3.1.2 口及口。的估计
3.1.3 有关的统计推断
3.2 逐步回归法
3.3 Logistic回归模型
3.3.1 线性Logistic回归模型
3.3.2 参数的最大似然估计与Ne0n_Raphson迭代解法
3.3.3 Logistic模型的统计推断
习题
第4章 主成分分析与因子分析
4.1 主成分分析
4.1.1 引言
4.1.2 总体主成分
4.1.3 样本主成分
4.2 因子分析
4.2.1 引言
4.2.2 正交因子模型
4.2.3 参数估计方法
4.2.4 主成分估计法的具体步骤
4.2.5 方差最大的正交旋转
4.2.6 因子得分
习题
第5章 判别分析
5.1 距离判别
5.1.1 判别分析的基本思想及意义
5.1.2 两个总体的距离判别
5.1.3 判别准则的评价
5.1.4 多个总体的距离判别
5.2 Bayes判别
5.2.1 Bayes判别的基本思想
5.2.2 两个总体的Bayes判别
5.2.3 多个总体的Bayes判别
5.2.4 逐步判别简介
习题
第6章 聚类分析
6.1 距离与相似系数
6.1.1 聚类分析的基本思想及意义
6.1.2 样品间的相似性度量——距离
6.1.3 变量间的相似性度量——相似系数
6.2 谱系聚类法
6.2.1 类间距离
6.2.2 类间距离的递推公式
6.2.3 谱系聚类法的步骤
6.2.4 变量聚类
6.3 快速聚类法
6.3.1 快速聚类法的步骤
6.3.2 用k距离进行快速聚类
习题
第7章 时间序列分析
7.1 平稳时间序列
7.1.1 时间序列分析及其意义
7.1.2 随机过程概念及其数字特征
7.1.3 平稳时间序列与平稳随机过程
7.1.4 平稳性检验及自协方差函数、自相关函数的估计
7.2 ARMA时间序列及其特性
7.2.1 ARMA时间序列的定义
7.2.2 ARMA序列的平稳性与可逆性
7.2.3 ARMA序列的相关特性
7.3 ARMA时间序列的建模与预报
7.3.1 川王MA序列参数的矩估计
7.3.2 ARMA序列参数的精估计
7.3.3 ARMA模型的定阶与考核
7.3.4 平稳线性最小均方预报
7.3.5 削RMA序列的预报
7.4 ARIMA序列与季节性序列
7.4.1 ARIMA序列及其预报
7.4.2 季节性序列及其预报
习题
第8章 常用数据分析方法的sAs过程简介
8.1 SAS系统简介
8.1.1 建立SAS数据集
8.1.2 利用已有的SAS数据集建立新的SAS数据集
8.1.3 SAS系统的数学运算符号及常用的SAS函数
8.1.4 逻辑语句与循环语句
8.2 常用数据分析方法的s八s过程
8.2.1 几种描述性统计分析的sAS过程
8.2.2 非参数秩方法的SAS过程
8.2.3 回归分析的SAS过程
8.2.4 主成分分析与因子分析的SAS过程
8.2.5 判别分析的SAS过程
8.2.6 聚类分析的SAS过程
8.2.7 时间序列分析的SAS过程——PRCARIMA过程
8.2.8 SAS系统的矩阵运算——PR(CIMll过程简介)
主要参考文献
数据分析(第2版) [Information Science] 下载 mobi epub pdf txt 电子书 格式