Python數據分析(影印版) [Python Data Analysis]

Python數據分析(影印版) [Python Data Analysis] 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
Ivan,Idris 著



點擊這裡下載
    

想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-12-24

類似圖書 點擊查看全場最低價


圖書介紹

齣版社: 東南大學齣版社
ISBN:9787564160647
版次:1
商品編碼:11830505
包裝:平裝
外文名稱:Python Data Analysis
開本:16開
齣版時間:2016-01-01
用紙:膠版紙
頁數:329
字數:426000
正文語種:英文


相關圖書





圖書描述

內容簡介

  Python是一種多範式的編程語言,既適閤麵嚮對象的應用開發,也適閤函數式設計模式。Python已然成為數據科學傢們在數據分析、可視化和機器學習方麵的**語言,它可以帶來高效率和高生産力。
  《Python數據分析(影印版 英文版)》將教會初學者如何發掘Python的*大潛力用於數據分析,包括從數據獲取、清洗、操作、可視化以及存儲到復分析和建模等一切相關主題。它聚焦於一係列開源Python模塊,比如NumPy、SciPy、matplotlib、pandas、I Python、Cython、scikit-learn以及NLTK等。在後麵的章節裏,《Python數據分析(影印版 英文版)》涵蓋瞭數據可視化、信號處理與時間序列分析、數據庫、可預測分析及機器學習等主題。

目錄

Preface
Chapter 1: Getting Started with Python Libraries
Software used in this book
Installing software and setup
On Windows
On Linux
On Mac OS X
Building NumPy SciPy, matplotlib, and IPython from source
Installing with setuptools
NumPy arrays
A simple application
Using IPython as a shell
Reading manual pages
IPython notebooks
Where to find help and references
Summary

Chapter 2: NumPy Arrays
The NumPy array object
The advantages of NumPy arrays
Creating a multidimensional array
Selecting NumPy array elements
NumPy numerical types
Data type objects
Character codes
The dtype constructors
The dtype attributes
One-dimensional slicing and indexing
Manipulating array shapes
Stacking arrays
Splitting NumPy arrays
NumPy array attributes
Converting arrays
Creating array views and copies
Fancy indexing
Indexing with a list of locations
Indexing NumPy arrays with Booleans
Broadcasting NumPy arrays
Summary

Chapter 3: Statistics and Linear Algebra
NumPy and SciPy modules
Basic descriptive statistics with NumPy
Linear algebra with NumPy
Inverting matrices with NumPy,
Solving linear systems with NumPy
Finding eigenvalues and eigenvectors with-NumPy
NumPy random numbers
Gambling with the binomial distribution
Sampling the normal distribution
Performing a normality test with SciPy
Creating a NumPy-masked array
Disregarding negative and extreme values
Summary

Chapter 4: pandas Primer
Installing and exploring pandas
pandas DataFrames
pandas Series
Querying data in pandas
Statistics with pandas DataFrames
Data aggregation with pandas DataFrames
Concatenating and appending DataFrames
Joining DataFrames
Handling missing values
Dealing with dates
Pivot tables
Remote data access
Summary

Chapter 5: Retrieving, Processing, and Storing Data
Writing CSV files withNumPy and pandas
Comparing the NumPy .npy binary format and pickling
pandas DataFrames
Storing data with PyTables
Reading and writing pandas DataFrames to HDF5 stores
Reading and writing to Excel with pandas
Using REST web services and JSON
Reading and writing JSON with pandas
Parsing RSS and Atom feeds
Parsing HTML with Beautiful Soup
Summary

Chapter 6: Data Visualization
matplotlib subpackages
Basic matplotlib plots
Logarithmic plots
Scatter plots
Legends and annotations
Three-dimensional plots
Plotting in pandas
Lag plots
Autocorrelation plots
Plot.ly
Summary

Chapter 7: Signal Processing and Time Series
statsmodels subpackages
Moving averages
Window functions
Defining cointegration
Autocorrelation
Autoregressive models
ARMA models
Generating periodic signals
Fourier analysis
Spectral analysis
Filtering
Summary

Chapter 8: Working with Databases
Lightweight access with sqlite3
Accessing databases from pandas
SQLAIchemy
Installing and setting up SQLAIchemy
Populating a database with SQLAIchemy
Querying the database with SQLAIchemy
Pony ORM
Dataset - databases for lazy people
PyMongo and MongoDB
Storing data in Redis
Apache Cassandra
Summary

Chapter 9: Analyzing Textual Data and Social Media
Installing NLTK
Filtering out stopwords, names, and numbers
The bag-of-words model
Analyzing word frequencies
Naive Bayes classification
Sentiment analysis
Creating word clouds
Social network analysis
Summary
Chapter 10: Predictive Analytics and Machine Learning
A tour of scikit-learn
Preprocessing
Classification with logistic regression
Classification with support vector machines
Regression with ElasticNetCV
Support vector regression
Clustering with affinity propagation
Mean Shift
Genetic algorithms
Neural networks
Decision trees
Summary

Chapter 11: Environments Outside the Python Ecosystem and Cloud Computing
Exchanging information with MATLAB/Octave
Installing rpy2
Interfacing with R
Sending NumPy arrays to Java
Integrating SWIG and NumPy
Integrating Boost and Python
Using Fortran code through f2py
Setting up Google App Engine
Running programs on PythonAnywhere
Working with Wakari
Summary

Chapter 12: Performance Tuning, Profiling, and Concurrency
Profiling the code
Installing Cython
Calling C code
Creating a process pool with multiprocessing
Speeding up embarrassingly parallel for loops with Joblib
Comparing Bottleneck to NumPy functions
Performing MapReduce with Jug
Installing MPI for Python
IPython Parallel
Summary

Appendix A: Key Concepts
Appendix B: Useful Functions
matplotlib
NumPy
pandas
Scikit-learn
SciPy
scipy.fftpack
scipy.signal
scipy.stats
Appendix C: Online Resources
Index

精彩書摘

  《Python數據分析(影印版)》:
  Installing and exploring pandas
  The minimal dependency set requirements for pandas is given as follows:
  NumPy: This is the fundament alnumerical array package that we installed and covered extensively in the preceding chapters
  python—dateuh I:Thisis a date—handlinglibrary
  pytz: This handles time zone definitions
  This list is the bare minimum; a longer list of optional dependencies can be locatedat http://pandas.pydata.org/pandas—docs/stable/install.html.We caninstall pandas via PyPI with pip or easy_install, using a binary installer, with theaid of our operating system package manager, or from the source by checking outthe code.The binary installers can be downloaded from http://pandas.pydata.org/getpandas.html.
  The command to install pandas with pip is as follows:
  pip install pandas
  You may have to prepend the preceding command with sudo if your user accountdoesn't have sufficient rights.For most, if not all, Linux distributions, the pandaspackage name is python—pandas.Please refer to the manual pages of your packagemanager for the correct command to install.These commands should be the same asthe ones summarized in Chapter 1, Getting Started with Python Libraries.To install fromthe source, we need to execute the following commands from the command line:
  $ git clone git://github.com/pydata/pandas.git
  $ cd pandas
  $ python setup.py install
  This procedure requires the correct setup of the compiler and other dependencies;therefore, it is recommended only if you really need the most up—to—date versionof pandas.Once we have installed pandas, we can explore it further by addingpandas—related lines to our documentation—scanning script pkg_check.
  ……

前言/序言


Python數據分析(影印版) [Python Data Analysis] 下載 mobi epub pdf txt 電子書 格式

Python數據分析(影印版) [Python Data Analysis] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

Python數據分析(影印版) [Python Data Analysis] 下載 mobi pdf epub txt 電子書 格式 2024

Python數據分析(影印版) [Python Data Analysis] 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

寫的很差,函數和例子的堆砌,且例子構造很弱智,看起來枯燥無味。此書和另一本書中文名很像,但差距很大,大傢買的時候韆萬擦亮眼睛

評分

好書,準備這幾天就看

評分

可能是由於本人在京東購買圖書的時間每每總處於優惠活動高峰期(當然我相信絕大部分書友可能都是在這一時段下手的。。。嗬嗬嗬),加上京東在新浪微博等處的網絡宣傳活動做得非常成功,也吸引瞭更多的購書、藏書的愛書之人,因此在收獲包裹這一過程上我等待的有點久(具體原因是由於在訂單中存在有部分商品需要從外地調貨過來的情況——想想就覺得會很麻煩,但愛書的心切還是讓我毅然決然。。。),我想可能各個城市的京東庫房在活動期間一定是忙得不可開交,也完全能夠理解,以及快遞公司的派件員們的辛苦,十分感謝!大概上我等瞭有一個星期左右的時間,由於經常買書的緣故,位於我所居住的那個區域的派件小哥都認識我瞭,這不免讓我有點小尷尬。小哥跟我說以後在網上買書可以多下些單,因為對於他們而言,每成功派送一個派件就可以多拿一塊錢。當時我覺得心中很五味陳雜,這恐怕也是我一直選擇在京東購物的一個小原因,不知道其他的快遞公司是否也有這樣的規定,所以我也盡量做到能夠在滿足我所需的購物優惠政策下盡可能的將訂單分配到最多,並且也可以享受到更多的優惠福利。每次在小哥那裏取件的時候都覺得蠻自豪的,嘿嘿。。。 下麵講一下商品本身的部分。 首先,京東發貨的包裹質量嚮來都是較高的,我曾經也像很多人一樣貨比三傢的在同類大型專業圖書網購商城購買過,比較後發現京東的包裝是相對認真負責的,訂單商品較少時選擇以雙層塑料包裝的形式,雖然沒有像其他商傢會使用較小型的瓦楞紙箱,但包裝是做的相當用心的;商品較多時采用紙箱包裝也一定花費瞭相當的工夫,充分體現瞭京東商城的服務品質。且包裹內的訂單存根詳細準確。 其次,由於我是一個十分愛惜書籍的人,對圖書的質量也比較在乎,本著藏書的心態大過讀書,我對商品本身的質量要求還是比較高的。具體到商品個體上,但凡是齣版商提供外塑料包裝膜的書籍幾乎不存在破損毀壞的情況,因為在運送包裹的過程裏難免不發生磕磕碰碰的情況,有時會有塑料膜開裂的現象,但書體本身是完好無損的,拆開後也沒有發現有其他質量上的問題,新品成色很高。而凡是不提供外塑料包裝膜的書籍質量依舊能保持很好的水平,這一點我覺得很難得,封麵磨損少、幾乎無劃痕汙漬破爛變形等情況;內頁也少有摺痕凹損的情況。每次拆包裹的時候那種滿意欣喜的情緒真是不言而喻。

評分

不實用

評分

不錯不錯,希望它好用啊!

評分

不錯不錯不錯不錯不錯不錯不錯

評分

中文版的被同學拿走瞭,自己又買瞭一本英文版,可能讀起來會比較慢,這書還行。

評分

好書,準備這幾天就看

評分

資料,好東西!!!

類似圖書 點擊查看全場最低價

Python數據分析(影印版) [Python Data Analysis] mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.teaonline.club All Rights Reserved. 圖書大百科 版權所有