发表于2024-11-24
内容全面;结构合理;叙述清楚;深入浅出。人工智能领域中文的开山之作!
相关图书推荐:
人工智能领域的创新之作,三大主流方法的和谐统一!当今各种人工智能学说的集成创新。
A Must Read for AI
A Must Read for AI
机器学习是计算机科学与人工智能的重要分支领域. 本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面. 全书共16 章,大致分为3 个部分:第1 部分(第1~3 章)介绍机器学习的基础知识;第2 部分(第4~10 章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3 部分(第11~16 章)为进阶知识,内容涉及特征选择与稀疏学习、计算学习理论、半监督学习、概率图模型、规则学习以及强化学习等. 每章都附有习题并介绍了相关阅读材料,以便有兴趣的读者进一步钻研探索。
本书可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考。
周志华,南京大学计算机系教授,ACM杰出科学家,IEEE Fellow, IAPR Fellow, IET/IEE Fellow, 中国计算机学会会士。国家杰出青年科学基金获得者、长江学者特聘教授。先后担任多种SCI(E)期刊执行主编、副主编、副编辑、编委等。中国计算机学会人工智能与模式识别专业委员会主任,中国人工智能学会机器学习专业委员会主任,IEEE计算智能学会数据挖掘技术委员会副主席。
目录
第1章 1
1.1 引言 1
1.2 基本术 2
1.3 假设空间 4
1.4 归纳偏好 6
1.5 发展历程 10
1.6 应用现状 13
1.7 阅读材料 16
习题 19
参考文献 20
休息一会儿 22
第2章 模型评估与选择 23
2.1 经验误差与过拟合 23
2.2 评估方法 24
2.2.1 留出法 25
2.2.2 交叉验证法 26
2.2.3 自助法 27
2.2.4 调参与最终模型 28
2.3 性能度量 28
2.3.1 错误率与精度 29
2.3.2 查准率、查全率与F1 30
2.3.3 ROC与AUC 33
2.3.4 代价敏感错误率与代价曲线 35
2.4 比较检验 37
2.4.1 假设检验 37
2.4.2 交叉验证t检验 40
2.4.3 McNemar检验 41
2.4.4 Friedman检验与后续检验 42
2.5 偏差与方差 44
2.6 阅读材料 46
习题 48
参考文献 49
休息一会儿 51
第3章 线性模型 53
3.1 基本形式 53
3.2 线性回归 53
3.3 对数几率回归 57
3.4 线性判别分析 60
3.5 多分类学习 63
3.6 类别不平衡问题 66
3.7 阅读材料 67
习题 69
参考文献 70
休息一会儿 72
第4章 决策树 73
4.1 基本流程 73
4.2 划分选择 75
4.2.1 信息增益 75
4.2.2 增益率 77
4.2.3 基尼指数 79
4.3 剪枝处理 79
4.3.1 预剪枝 80
4.3.2 后剪枝 82
4.4 连续与缺失值 83
4.4.1 连续值处理 83
4.4.2 缺失值处理 85
4.5 多变量决策树 88
4.6 阅读材料 92
习题 93
参考文献 94
休息一会儿 95
第5章 神经网络 97
5.1 神经元模型 97
5.2 感知机与多层网络 98
5.3 误差逆传播算法 101
5.4 全局最小与局部极小 106
5.5 其他常见神经网络 108
5.5.1 RBF网络 108
5.5.2 ART网络 108
5.5.3 SOM网络 109
5.5.4 级联相关网络 110
5.5.5 Elman网络 111
5.5.6 Boltzmann机 111
5.6 深度学习 113
5.7 阅读材料 115
习题 116
参考文献 117
休息一会儿 120
第6章 支持向量机 121
6.1 间隔与支持向量 121
6.2 对偶问题 123
6.3 核函数 126
6.4 软间隔与正则化 129
6.5 支持向量回归 133
6.6 核方法 137
6.7 阅读材料 139
习题 141
参考文献 142
休息一会儿 145
第7章 贝叶斯分类器 147
7.1 贝叶斯决策论 147
7.2 极大似然估计 149
7.3 朴素贝叶斯分类器 150
7.4 半朴素贝叶斯分类器 154
7.5 贝叶斯网 156
7.5.1 结构 157
7.5.2 学习 159
7.5.3 推断 161
7.6 EM算法 162
7.7 阅读材料 164
习题 166
参考文献 167
休息一会儿 169
第8章 集成学习 171
8.1 个体与集成 171
8.2 Boosting 173
8.3 Bagging与随机森林 178
8.3.1 Bagging 178
8.3.2 随机森林 179
8.4 结合策略 181
8.4.1 平均法 181
8.4.2 投票法 182
8.4.3 学习法 183
8.5 多样性 185
8.5.1 误差--分歧分解 185
8.5.2 多样性度量 186
8.5.3 多样性增强 188
8.6 阅读材料 190
习题 192
参考文献 193
休息一会儿 196
第9章 聚类 197
9.1 聚类任务 197
9.2 性能度量 197
9.3 距离计算 199
9.4 原型聚类 202
9.4.1 k均值算法 202
9.4.2 学习向量量化 204
9.4.3 高斯混合聚类 206
9.5 密度聚类 211
9.6 层次聚类 214
9.7 阅读材料 217
习题 220
参考文献 221
休息一会儿 224
第10章 降维与度量学习 225
10.1 k近邻学习 225
10.2 低维嵌入 226
10.3 主成分分析 229
10.4 核化线性降维 232
10.5 流形学习 234
10.5.1 等度量映射 234
10.5.2 局部线性嵌入 235
10.6 度量学习 237
10.7 阅读材料 240
习题 242
参考文献 243
休息一会儿 246
第11章 特征选择与稀疏学习 247
11.1 子集搜索与评价 247
11.2 过滤式选择 249
11.3 包裹式选择 250
11.4 嵌入式选择与L$_1$正则化 252
11.5 稀疏表示与字典学习 254
11.6 压缩感知 257
11.7 阅读材料 260
习题 262
参考文献 263
休息一会儿 266
第12章 计算学习理论 267
12.1 基础知识 267
12.2 PAC学习 268
12.3 有限假设空间 270
12.3.1 可分情形 270
12.3.2 不可分情形 272
12.4 VC维 273
12.5 Rademacher复杂度 279
12.6 稳定性 284
12.7 阅读材料 287
习题 289
参考文献 290
休息一会儿 292
第13章 半监督学习 293
13.1 未标记样本 293
13.2 生成式方法 295
13.3 半监督SVM 298
13.4 图半监督学习 300
13.5 基于分歧的方法 304
13.6 半监督聚类 307
13.7 阅读材料 311
习题 313
参考文献 314
休息一会儿 317
第14章 概率图模型 319
14.1 隐马尔可夫模型 319
14.2 马尔可夫随机场 322
14.3 条件随机场 325
14.4 学习与推断 328
14.4.1 变量消去 328
14.4.2 信念传播 330
14.5 近似推断 331
14.5.1 MCMC采样 331
14.5.2 变分推断 334
14.6 话题模型 337
14.7 阅读材料 339
习题 341
参考文献 342
休息一会儿 345
第15章 规则学习 347
15.1 基本概念 347
15.2 序贯覆盖 349
15.3 剪枝优化 352
15.4 一阶规则学习 354
15.5 归纳逻辑程序设计 357
15.5.1 最小一般泛化 358
15.5.2 逆归结 359
15.6 阅读材料 363
习题 365
参考文献 366
休息一会儿 369
第16章 强化学习 371
16.1 任务与奖赏 371
16.2 $K$-摇臂赌博机 373
16.2.1 探索与利用 373
16.2.2 $epsilon $-贪心 374
16.2.3 Softmax 375
16.3 有模型学习 377
16.3.1 策略评估 377
16.3.2 策略改进 379
16.3.3 策略迭代与值迭代 381
16.4 免模型学习 382
16.4.1 蒙特卡罗强化学习 383
16.4.2 时序差分学习 386
16.5 值函数近似 388
16.6 模仿学习 390
16.6.1 直接模仿学习 391
16.6.2 逆强化学习 391
16.7 阅读材料 393
习题 394
参考文献 395
休息一会儿 397
附录 399
A 矩阵 399
B 优化 403
C 概率分布 409
后记 417
索引 419
这是一本面向中文读者的机器学习教科书,为了使尽可能多的读者通过本书对机器学习有所了解,作者试图尽可能少地使用数学知识。然而,少量的概率、统计、代数、优化、逻辑知识似乎不可避免。因此,本书更适合大学三年级以上的理工科本科生和研究生,以及具有类似背景的对机器学习感兴趣的人士。为方便读者,本书附录给出了一些相关数学基础知识简介。
全书共16章,大体上可分为3个部分:第1部分包括第1~3章,介绍机器学习基础知识;第2部分包括第4~10章,介绍一些经典而常用的机器学习方法;第3部分包括第11~16章,介绍一些进阶知识。前3章之外的后续各章均相对独立,读者可根据自己的兴趣和时间情况选择使用。根据课时情况,一个学期的本科生课程可考虑讲授前9章或前10章;研究生课程则不妨使用全书。
书中除第1章外,每章都给出了十道习题。有的习题是帮助读者巩固本章学习,有的是为了引导读者扩展相关知识。一学期的一般课程可使用这些习题,再辅以两到三个针对具体数据集的大作业。带星号的习题则有相当难度,有些并无现成答案,谨供富有进取心的读者启发思考。
本书在内容上尽可能涵盖机器学习基础知识的各方面,但作为机器学习入门读物且因授课时间的考虑,很多重要、前沿的材料未能覆盖,即便覆盖到的部分也仅是管中窥豹,更多的内容留待读者在进阶课程中学习。为便于有兴趣的读者进一步钻研探索,本书每章均介绍了一些阅读材料,谨供读者参考。
笔者以为,对学科相关的重要人物和事件有一定了解,将会增进读者对该学科的认识。本书在每章最后都写了一个与该章内容相关的小故事,希望有助于读者增广见闻,并且在紧张的学习过程中稍微放松调剂一下。
书中不可避免地涉及大量外国人名,若全部译为中文,则读者在日后进一步阅读文献时或许会对不少人名产生陌生感,不利于进一步学习。
因此,本书仅对一般读者耳熟能详的名字如“图灵”等加以直接使用,对故事中的一些主要人物给出了译名,其他则保持外文名。
机器学习发展极迅速,目前已成为一个广袤的学科,罕有人士能对其众多分支领域均有精深理解。笔者自认才疏学浅,仅略知皮毛,更兼时间和精力所限,书中错谬之处在所难免,若蒙读者诸君不吝告知,将不胜感激。
机器学习【首届京东文学奖-年度新锐入围作品】 下载 mobi pdf epub txt 电子书 格式 2024
机器学习【首届京东文学奖-年度新锐入围作品】 下载 mobi epub pdf 电子书很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧很好很好吧
评分几年前逛京东还不是那么的信任京东,现在信赖首选京东默默哒一直看着它一年一年发展的越来越好,心里也在为京东发展壮大而加油打气。为什么我喜欢京东购物,因为可以当天买自己喜欢的商品,阴天就可以到达客户的家中,为什么我所有的评价都相同,因为在京东买的东西太多太多,商品积累的太多没有评价,最佩服的,还是京东物流,有时晚上11点前动动手指,购买的商品,第二天上午就送到单位或者家里,还可以刷卡付款。自营的商品挺有保证,售后,有问题打专属客服热线。客服很赞,一句话的事儿,直接上门取件退,上门更换新商品,家电有价保,一个月退货,半年换货,实体店儿弱爆了,根本没有竞争力与京东相提并论;比老家的商铺街上的价格省了一大截票子哈
评分此卖家交流,不由得精神为之一振,自觉七经八脉为之一畅,我在~买了这么多年,所谓阅商无数,但与卖家您交流,我只想说,老板你实在是太好了,你的高尚情操太让人感动了,本人对此卖家之仰慕如滔滔江水连绵不绝,海枯石烂,天崩地裂,永不变心。交易成功后,我的心情是久久不能平静,自古英雄出少年,卖家年纪轻轻,就有经天纬地之才,定国安邦之智,而今,天佑我大中华,沧海桑田5000年,神州平地一声雷,飞沙走石,大雾迷天,朦胧中,只见顶天立地一金甲天神立于天地间,花见花开,人见人爱,这位英雄手持双斧,二目如电,一斧下去,混沌初开,二斧下去,女娲造人,三斧下去,小生倾倒。得此大英雄,实乃国之幸也,民之福,人之初也,怎不叫人喜极而泣……看着交易成功,我竟产生出一种无以名之的悲痛感——啊,这么好的卖家,如果将来我再也遇不到了,那我该怎么办?直到我毫不犹豫地把卖家的店收藏了,我内心的那种激动才逐渐平静下来,可是我立刻想到,这么好的卖家,倘若别人看不到,那么不是浪费心血吗?经过痛苦的思想斗争,我终于下定决心,牺牲小我,奉献大我。我要以此评价奉献给世人赏阅,我要给好评……评到所有人都看到为止!
评分寻梦?撑一支长篙,向青草更青处漫溯;满载一船星辉,在星辉斑斓里放歌。
评分那河畔的金柳,是夕阳中的新娘;波光里的艳影,在我的心头荡漾。
评分但我不能放歌,悄悄是别离的笙箫;夏虫也为我沉默,沉默是今晚的康桥!
评分2.为了提高网站流量把练习题放在网站上就不说了,扯淡的是练习题要收网站币,而且练习题所需的知识也有些超前。
评分4.自学本来就慢,一会儿看书一会儿看论坛更TM慢了。
评分非常感谢京东商城给予的优质的服务,从仓储管理、物流配送等各方面都是做的非常好的。送货及时,配送员也非常的热情,有时候不方便收件的时候,也安排时间另行配送。同时京东商城在售后管理上也非常好的,以解客户忧患,排除万难。给予我们非常好的购物体验。顺商祺!ThankyouverymuchfortheexcellentserviceprovidedbyJingdongmall,anditisverygoodtodoinwarehousemanagement,logistics,distributionandsoon.Deliveryinatimelymanner,distributionstaffisalsoveryenthusiastic,andsometimesinconvenienttoreceivethetime,butalsoarrangedfortimetobedelivered.AtthesametimeinthemallmanagementJingdongcustomerserviceisalsoverygood,tosolvecustomersuffering,overcomealldifficulties.Giveusaverygoodshoppingexperience
机器学习【首届京东文学奖-年度新锐入围作品】 mobi epub pdf txt 电子书 格式下载 2024