发表于2024-11-26
本书以深度学习算法入门为主要内容,通过介绍Python、NumPy、SciPy等科学计算库,深度学习主流算法,深度学习前沿研究,深度学习服务云平台构建四大主线,向读者地介绍了深度学习的主要内容和研究进展。本书介绍了Python、NumPy、SciPy的使用技巧,面向谷歌推出的开源深度学习框架TensorFlow,向读者展示了利用TensorFlow和Theano框架实现线性回归、逻辑回归、多层感知器、卷积神经网络、递归神经网络、长短时记忆网络、去噪自动编码机、堆叠自动编码机、受限玻尔兹曼机、深度信念网络等,并将这些技术用于MNIST手写数字识别任务。本书不仅讲述了深度学习算法本身,而且重点讲述了如何将这些深度学习算法包装成Web服务。本书旨在帮助广大工程技术人员快速掌握深度学习相关理论和实践,并将这些知识应用到实际工作中。
一部分 深度学习算法概述
1章 深度学习算法简介 2
1.1 神经网络发展简史 2
1.1.1 神经网络一次兴起 3
1.1.2 神经网络沉寂期(20世纪80年代—21世纪) 4
1.1.3 神经网络技术积累期(20世纪90年代—2006年) 5
1.1.4 深度学习算法崛起(2006年至今) 8
1.2 深度学习现状 10
1.2.1 传统神经网络困境 10
1.2.2 深度多层感知器 12
1.2.3 深度卷积神经网络 14
1.2.4 深度递归神经网络 15
1.3 深度学习研究前瞻 16
1.3.1 自动编码机 17
1.3.2 深度信念网络 18
1.3.3 生成式网络**进展 19
1.4 深度学习框架比较 20
1.4.1 TensorFlow 20
1.4.2 Theano 21
1.4.3 Torch 22
1.4.4 DeepLearning4J 23
1.4.5 Caffe 23
1.4.6 MXNet 24
1.4.7 CNTK 27
1.4.8 深度学习框架造型指导原则 27
1.5 深度学习入门路径 28
1.5.1 运行MNIST 28
1.5.2 深度学习框架的选择 29
1.5.3 小型试验网络 33
1.5.4 训练生产网络 33
1.5.5 搭建生产环境 34
1.5.6 持续改进 35
二部分 深度学习算法基础
2章 搭建深度学习开发环境 38
2.1 安装Python开发环境 38
2.1.1 安装*新版本Python 38
2.1.2 Python虚拟环境配置 39
2.1.3 安装科学计算库 40
2.1.4 安装*新版本Theano 40
2.1.5 图形绘制 40
2.2 NumPy简易教程 43
2.2.1 Python基础 43
2.2.2 多维数组的使用 51
2.2.3 向量运算 58
2.2.4 矩阵运算 60
2.2.5 线性代数 62
2.3 TensorFlow简易教程 68
2.3.1 张量定义 69
2.3.2 变量和placeholder 69
2.3.3 神经元激活函数 71
2.3.4 线性代数运算 72
2.3.5 操作数据集 74
2.4 Theano简易教程 77
2.4.1 安装Theano 77
2.4.2 Theano入门 78
2.4.3 Theano矩阵相加 79
2.4.4 变量和共享变量 80
2.4.5 随机数的使用 84
2.4.6 Theano求导 84
2.5 线性回归 86
2.5.1 问题描述 86
2.5.2 线性模型 88
2.5.3 线性回归学习算法 89
2.5.4 解析法 90
2.5.5 Theano实现 93
3章 逻辑回归 100
3.1 逻辑回归数学基础 100
3.1.1 逻辑回归算法的直观解释 100
3.1.2 逻辑回归算法数学推导 101
3.1.3 牛顿法解逻辑回归问题 103
3.1.4 通用学习模型 106
3.2 逻辑回归算法简单应用 113
深度学习算法实践(基于Theano和TensorFlow) 下载 mobi epub pdf txt 电子书 格式深度学习算法实践(基于Theano和TensorFlow) 下载 mobi pdf epub txt 电子书 格式 2024
深度学习算法实践(基于Theano和TensorFlow) 下载 mobi epub pdf 电子书深度学习算法实践(基于Theano和TensorFlow) mobi epub pdf txt 电子书 格式下载 2024