畅销书《Python神经网络编程》作者最新力作;
全彩印刷,配套示例代码,图文并茂,易懂实用;
从零开始,用PyTorch构建自己的生成对抗网络。
生成对抗网络(Generative Adversarial Network,GAN)是神经网络领域的一颗新星,被誉为“机器 学习领域近 20 年来最酷的想法”。
本书以直白、简短的方式向读者介绍了生成对抗网络,指导读者如何使用PyTorch 按部就班地编写生成对抗网络。
全书共3章和5个附录,分别介绍了PyTorch基础知识,用PyTorch开发神经网络,改良神经网络以提升效果,引入CUDA和GPU以加速GAN训练,以及生成高质量图像的卷积GAN、条件式GAN等话题。附录部分介绍了在很多机器学习相关教程中被忽略的主题,包括计算平衡GAN的理想损失值、概率分布和采样,以及卷积如何工作,还简单解释了为什么梯度下降不适用于对抗式机器学习。
本书适合想初步了解GAN以及其工作原理的读者,也适合想要学习如何构建GAN的机器学习从业人员。对于正在学习机器学习相关课程的学生,本书可以帮助读者快速入门,为后续的学习打好基础。
##刚开始翻看的时候觉得内容很少,感觉会很水。但是读完之后,里面的基础讲的很有味道,也令人深思。对GAN问题和提出的一些想法剖析的很不错,原因讲的很清楚。
评分##nb!
评分##写的很好,深入浅出。GAN的核心思想,共分3步,第一,向鉴别器展示一个真实的样本,并告诉它分类为真;第二,向鉴别器展示一个生成器的输出,并告诉它分类为假;第三,向鉴别器展示一个生成器的输出,并告诉【生成器】分类为真(让生成器优化生成权重,以生成更好的图片)
评分##非常适合入门,简洁易懂
评分##写的很好,深入浅出。GAN的核心思想,共分3步,第一,向鉴别器展示一个真实的样本,并告诉它分类为真;第二,向鉴别器展示一个生成器的输出,并告诉它分类为假;第三,向鉴别器展示一个生成器的输出,并告诉【生成器】分类为真(让生成器优化生成权重,以生成更好的图片)
评分##如果我是2020年看的话可能可以打高一些吧
评分##由浅入深逐步引导,非常适合入门
评分##入门级读物,通过最基础最简单的方式带你入门,读懂代码。一本很不错的读物,但缺乏广度 。
评分##小错误不少
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.teaonline.club All Rights Reserved. 图书大百科 版权所有