內容簡介
概率論是研究自然界和人類社會中隨機現象數量規律的數學分支,《華章數學原版精品係列:概率論基礎教程(英文版·第8版)》通過大量的例子講述瞭概率論的基礎知識,主要內容有組閤分析、概率論公理化、條件概率和獨立性、離散和連續型隨機變量、隨機變量的聯閤分布、期望的性質、極限定理等。《華章數學原版精品係列:概率論基礎教程(英文版·第8版)》附有大量的練習,分為習題、理論習題和自檢習題三大類,其中自檢習題部分還給齣全部解答。《華章數學原版精品係列:概率論基礎教程(英文版·第8版)》作為概率論的入門書,適用於大專院校數學、統計、工程和相關專業(包括計算科學、生物、社會科學和管理科學)的學生閱讀,也可供應用工作者參考。
作者簡介
羅斯(Sheldon Ross),世界著名的應用概率專傢和統計學傢,現為南加州大學工業與係統工程係Epstein講座教授。他於1968年在斯坦福大學獲得統計學博士學位,在1976年~2004年期間於加州大學伯剋利分校任教,其研究領域包括統計模擬、金融工程、應用概率模型、隨機動態規劃等。Ross教授創辦瞭《Probability in the Engirleering and Informational Sciences》雜誌並一直擔任主編,他的多種暢銷教材均産生瞭世界性的影響,其中《統計模擬(第5版)》和《隨機過程(第2版)》等均由機械工業齣版社引進齣版。
內頁插圖
精彩書評
★“這是一本非常優秀的概率論入門教材,是我所見過的最好的一本。”
——Nhu Nguyen(新墨西哥州立大學)
★“本書示例豐富、實用,寫作風格清新、流暢,解答詳細、準確,是一本通俗易懂的教材……”
——Robert Bauer(伊利諾伊大學厄巴納-尚佩恩分校)
目錄
1 COMBINATORIAL ANALYSIS
1.1 Introduction
1.2 The Basic Principle of Counting
1.3 Permutations
1.4 Combinations
1.5 Multinomial Coefficients
1.6 The Number of Integer Solutions of Equations
2 AXIOMS OF PROBABILITY
2.1 Introduction
2.2 Sample Space and Events
2.3 Axioms of Probability
2.4 Some Simple Propositions
2.5 Sample Spaces Having Equally Likely Outcomes
2.6 Probability as a Continuous Set Function
2.7 Probability as a Measure of Belief
3 CONDITIONAL PROBABILITY AND INDEPENDENCE
3.1 Introduction
3.2 Conditional Probabilities
3.3 Bayes's Formula
3.4 Independent Events
3.5 P(F) Is a Probability
4 RANDOM VARIABLES
4.1 Random Variables it
4.2 Discrete Random Variables
4.3 Expected Value
4.4 Expectation of a Function of a Random Variable
4.5 Variance
4.6 The Bernoulli and Binomial Random Variables
4.7 The Poisson Random Variable
4.8 Other Discrete Probability Distributions
4.9 Expected Value of Sums of Random Variables
4.10 Properties of the Cumulative Distribution Function
5 CONTINUOUS RANDOM VARIABLES
5.1 Introduction
5.2 Expectation and Variance of Continuous Random Variables
5.3 The Uniform Random Variable
5.4 Normal Random Variables
5.5 Exponential Random Variables
5.6 Other Continuous Distributions
5.7 The Distribution of a Function of a Random Variable
6 JOINTLY DISTRIBUTED RANDOM VARIABLES
6.1 Joint Distribution Functions
6.2 Independent Random Variables
6.3 Sums of Independent Random Variables
6.4 Conditional Distributions: Discrete Case
6.5 Conditional Distributions: Continuous Case
6.6 Order Statistics
6.7 Joint Probability Distribution of Functions of Random Variables
6.8 Exchangeable Random Variables
7 PROPERTIES OF EXPECTATION
7.1 Introduction
7.2 Expectation of Sums of Random Variables
7.3 Moments of the Number of Events that Occur
7.4 Covariance, Variance of Sums, and Correlations
7.S Conditional Expectation
7.6 Conditional Expectation and Prediction
7.7 Moment Generating Functions
7.8 Additional Properties of Normal Random Variables
7.9 General Definition of Expectation
8 LIMIT THEOREMS
8.1 Introduction
8.2 Chebyshev's Inequality and the Weak Law of Large Numbers
8.3 The Central Limit Theorem
8.4 The Strong Law of Large Numbers
8.5 Other Inequalities
8.6 Bounding the Error Probability When Approximating a Sum of Independent Bernoulli Random Variables by a Poisson Random Variable
9 ADDITIONAL TOPICS IN PROBABILITY
9.1 The Poisson Process
9.2 Markov Chains
9.3 Surprise, Uncertainty, and Entropy
9.4 Coding Theory and Entropy
10 SIMULATION
10.1 Introduction
10.2 General Techniques for Simulating Continuous Random Variables
10.3 Simulating from Discrete Distributions
10.4 Variance Reduction Techniques
Answers to Selected Problems
Solutions to Self-Test Problems and Exercises
Index
前言/序言
華章數學原版精品係列:概率論基礎教程(英文版·第8版) [A First Course in Probability] 下載 mobi epub pdf txt 電子書 格式
華章數學原版精品係列:概率論基礎教程(英文版·第8版) [A First Course in Probability] 下載 mobi pdf epub txt 電子書 格式 2025
華章數學原版精品係列:概率論基礎教程(英文版·第8版) [A First Course in Probability] mobi epub pdf txt 電子書 格式下載 2025