- 领导“谷歌大脑”的工程师Jeff Dean发来寄语
- 李航、余凯等人工智能领域专家倾力推荐
- 基于TensorFlow 1.1,包揽TensorFlow的新特性
- 技术内容全面,实战案例丰富,视野广阔
- 人脸识别、语音识别、图像和语音相结合等热点一应俱全
TensorFlow是深度学习的流行框架之一,极适合新手入门。谷歌公司正致力于建立一个相关软件和机器学习模型的开源生态系统,这是人工智能发展的技术风口。
本书基于TensorFlow1.1版本,深入TensorFlow基础原理、设计理念、编程模型、源码分析和模型构建、工业界应用、大规模数据训练等。全书分为基础篇、实战篇和提高篇三部分。
“基础篇”
人工智能入门,学习深度学习的方法。
TensorFlow基础原理、设计架构和编程模型。
常用API、批标准化、模型的存储与加载、队列及线程、实现一个自定义OP。
TensorBorad可视化的全面解析。
源码分析。
神经网络(CNN和RNN)的发展演化以及如何用TensorFlow实现这些网络。
第三方上层框架Keras和TFLearn的应用。
“实战篇”
用TensorFlow实现了神经网络。
用TensorFlow实现CNN、RNN、LSTM和自动编码器的各种示例。
TensorFlow在人脸识别、语音识别、智能机器人、语音和图像相结合以及生成式对抗网络(GAN)等领域的实际应用。
“提高篇”
TensorFlow的分布式原理、架构和模式。
移动端开发(Android、iOS和树莓派)。
TensorFlow的新特性,线性代数编程框架XLA、调试器Debugger、动态图Fold、生产环境Serving。
TensorFlow和Kubernetes相结合。
TensorFlowOnSpark。
硬件计算加速。
机器学习的评测体系。
本书深入浅出,理论联系实际,实战案例新颖,适合对TensorFlow感兴趣的各层次读者阅读。
TensorFlow 是谷歌公司开发的深度学习框架,也是目前深度学习的主流框架之一。本书从深度学习的基础讲起,深入TensorFlow框架原理、模型构建、源代码分析和网络实现等各个方面。全书分为基础篇、实战篇和提高篇三部分。基础篇讲解人工智能的入门知识,深度学习的方法,TensorFlow的基础原理、系统架构、设计理念、编程模型、常用API、批标准化、模型的存储与加载、队列与线程,实现一个自定义操作,并进行TensorFlow源代码解析,介绍卷积神经网络(CNN)和循环神经网络(RNN)的演化发展及其TensorFlow实现、TensorFlow的高级框架等知识;实战篇讲解如何用TensorFlow写一个神经网络程序并介绍TensorFlow实现各种网络(CNN、RNN和自编码网络等)并对MNIST数据集进行训练,讲解TensorFlow在人脸识别、自然语言处理、图像和语音的结合、生成式对抗网络等方面的应用;提高篇讲解TensorFlow的分布式原理、架构、模式、API,还会介绍TensorFlow XLA、TensorFlow Debugger、TensorFlow和Kubernetes结合、TensorFlowOnSpark、TensorFlow移动端应用,以及TensorFlow Serving、TensorFlow Fold和TensorFlow计算加速等其他特性。最后,附录中列出一些可供参考的公开数据集,并结合作者的项目经验介绍项目管理的一些建议。
李嘉璇,创建TensorFlow交流社区,活跃于国内各大技术社区,知乎编程问题回答者。致力于人工智能的研究,对深度学习框架的架构、源码分析及在不同领域的应用有浓厚兴趣。有过上百篇论文阅读和深度学习经验,处理图像、社交文本数据情感分析、数据挖掘经验,参与过基于深度学习的自动驾驶二维感知系统Hackathon竞赛,曾任职百度研发工程师。
深度学习是当前人工智能核心的技术,TensorFlow是深度学习主要的实现平台。李嘉璇的这本书对TensorFlow的基本原理、主要特性、使用方法以及在TensorFlow上的技术开发做了系统全面的介绍,内容充实,讲解详尽。没有对TensorFlow的深刻理解和丰富的实战经验是写不出这样的好书来的,全书字里行间透出作者对技术的真诚热爱及细致钻研。本书定位恰当,出版及时,相信读者一定会喜欢,强烈推荐给大家!
——李航,华为诺亚方舟实验室主任,北京大学、南京大学客座教授,IEEE会士、ACM杰出科学家
我认为这本书非常适合希望研究深度学习的程序员。他们可以将本书作为一本基础和实践的书籍阅读。对于初学者来说,从TensorFlow入手是很好的起点。TensorFlow有谷歌的强大支持,并且有广泛的社区。读者可以从本书中了解基本的深度学习原理、典型的模型、大量的TensorFlow源代码以及成功的应用范例。从本书出发,读者可以循序渐进,逐步深入,在工作实践中加以运用,领略深度学习的美妙。
——余凯,地平线机器人创始人,前百度深度学习实验室主任
本书从应用的基本案例出发,使用实际的代码介绍TensorFlow的基础知识和各种使用方法。本书也介绍了一些深度学习的基础知识,如CNN、RNN、LSTM,并列出了一些深入研究深度学习的参考文献,是一本很好的从应用出发介绍TensorFlow的读物,非常适合有兴趣学习和使用TensorFlow的广大读者阅读。
——孙亮,《实用机器学习》作者,阿里巴巴数据科学与技术研究院高级专家
不“高来高去”、不“急于求成”、品味独特的TensorFlow深度学习实践指南。全书一气呵成,深入浅出,覆盖全面,实例丰富,是难得的用心佳作。“深度学习”浪潮当前,从“看热闹”到“看门道”路在何方?本书或许能帮你找到一些线索。
——陈光,北京邮电大学模式识别实验室副教授(微博@爱可可-爱生活)
从纯技术的角度来看,深度学习还是有些深奥的,幸亏AI社区有了越来越多的开源平台,使深度学习的应用变得越来越简单,TensorFlow即是其中优秀的平台之一。如何尽快熟悉这个平台,并能在实战中发挥其作用,是众多工程技术人员非常渴望获得的技能。嘉璇的这本书应该是很好的选择!作者基于对TensorFlow的深刻理解和丰富的实战经验,对TensorFlow的原理、特性、使用方法以及应用技巧做了详尽的介绍。特别是结合具体实例进行讲解的方式,有利于读者直观、快速地掌握有关的技能。嘉璇多才多艺,对技术和生活充满热爱和激情,相信这本书会有众多读者喜欢!
——山世光,中科院计算所研究员,中科院智能信息处理重点实验室常务副主任,中科视拓创始人、董事长兼CTO
TensorFlow是目前非常受欢迎的深度学习框架。本书作者在文本分析和数据挖掘方面拥有丰富的经验。通过相关算法的专业知识和对TensorFlow的所有前沿功能的深入解析,作者提供一章章的有用资料来分享实用和有见地的信息。细分为直观的“基础篇”“实战篇”“提高篇”这样的结构,可以帮助读者有效地学习。
——Matt Scott(码特),Malong(码隆科技)CTO
随着机器不断突破智能极限,我们将被卷入超乎想象的AI新时代。TensorFlow是推动人工智能进步的引擎,如果你希望站在机器学习浪潮上成为AI极客,那就从阅读本书开始努力吧!本书详尽地介绍了算法和模型的细节,同时穿插大量的工业界实际例子,清晰地讲解了如何构建深度学习模型,对建立完整的深度学习知识体系大有裨益。
——李卓桓,PreAngel合伙人,机器学习/ChatBot爱好者
深度学习的浪潮汹涌而来,TensorFlow则为广大弄潮儿提供了强大的帆板。对于更多虽没有弄潮经验却跃跃欲试的人,这本书正可以成为他们入海前的第一课。本书涉及图像识别、自然语言处理等多个领域,演示了包括CNN、RNN、GAN在内的多种算法实现,对入门深度学习和TensorFlow是难得的学习材料。
——边江,微软亚洲研究院主管研究员
第一篇 基础篇
第1章 人工智能概述 2
1.1 什么是人工智能 2
1.2 什么是深度学习 5
1.3 深度学习的入门方法 7
1.4 什么是TensorFlow 11
1.5 为什么要学TensorFlow 12
1.5.1 TensorFlow的特性 14
1.5.2 使用TensorFlow的公司 15
1.5.3 TensorFlow的发展 16
1.6 机器学习的相关赛事 16
1.6.1 ImageNet的ILSVRC 17
1.6.2 Kaggle 18
1.6.3 天池大数据竞赛 19
1.7 国内的人工智能公司 20
1.8 小结 22
第2章 TensorFlow环境的准备 23
2.1 下载TensorFlow 1.1.0 23
2.2 基于pip的安装 23
2.2.1 Mac OS环境准备 24
2.2.2 Ubuntu/Linux环境准备 25
2.2.3 Windows环境准备 25
2.3 基于Java的安装 28
2.4 从源代码安装 29
2.5 依赖的其他模块 30
2.5.1 numpy 30
2.5.2 matplotlib 31
2.5.3 jupyter 31
2.5.4 scikit-image 32
2.5.5 librosa 32
2.5.6 nltk 32
2.5.7 keras 33
2.5.8 tflearn 33
2.6 小结 33
第3章 可视化TensorFlow 34
3.1 PlayGround 34
3.1.1 数据 35
3.1.2 特征 36
3.1.3 隐藏层 36
3.1.4 输出 37
3.2 TensorBoard 39
3.2.1 SCALARS面板 40
3.2.2 IMAGES面板 41
3.2.3 AUDIO面板 42
3.2.4 GRAPHS面板 42
3.2.5 DISTRIBUTIONS面板 43
3.2.6 HISTOGRAMS面板 43
3.2.7 EMBEDDINGS面板 44
3.3 可视化的例子 44
3.3.1 降维分析 44
3.3.2 嵌入投影仪 48
3.4 小结 51
第4章 TensorFlow基础知识 52
4.1 系统架构 52
4.2 设计理念 53
4.3 编程模型 54
4.3.1 边 56
4.3.2 节点 57
4.3.3 其他概念 57
4.4 常用API 60
4.4.1 图、操作和张量 60
4.4.2 可视化 61
4.5 变量作用域 62
4.5.1 variable_scope示例 62
4.5.2 name_scope示例 64
4.6 批标准化 64
4.6.1 方法 65
4.6.2 优点 65
4.6.3 示例 65
4.7 神经元函数及优化方法 66
4.7.1 激活函数 66
4.7.2 卷积函数 69
4.7.3 池化函数 72
4.7.4 分类函数 73
4.7.5 优化方法 74
4.8 模型的存储与加载 79
4.8.1 模型的存储与加载 79
4.8.2 图的存储与加载 82
4.9 队列和线程 82
4.9.1 队列 82
4.9.2 队列管理器 85
4.9.3 线程和协调器 86
4.10 加载数据 87
4.10.1 预加载数据 87
4.10.2 填充数据 87
4.10.3 从文件读取数据 88
4.11 实现一个自定义操作 92
4.11.1 步骤 92
4.11.2 最佳实践 93
4.12 小结 101
第5章 TensorFlow源代码解析 102
5.1 TensorFlow的目录结构 102
5.1.1 contirb 103
5.1.2 core 104
5.1.3 examples 105
5.1.4 g3doc 105
5.1.5 python 105
5.1.6 tensorboard 105
5.2 TensorFlow源代码的学习方法 106
5.3 小结 108
第6章 神经网络的发展及其TensorFlow实现 109
6.1 卷积神经网络 109
6.2 卷积神经网络发展 110
6.2.1 网络加深 111
6.2.2 增强卷积层的功能 115
6.2.3 从分类任务到检测任务 120
6.2.4 增加新的功能模块 121
6.3 MNIST的AlexNet实现 121
6.3.1 加载数据 121
6.3.2 构建网络模型 122
6.3.3 训练模型和评估模型 124
6.4 循环神经网络 125
6.5 循环神经网络发展 126
6.5.1 增强隐藏层的功能 127
6.5.2 双向化及加深网络 129
6.6 TensorFlow Model Zoo 131
6.7 其他研究进展 131
6.7.1 强化学习 132
6.7.2 深度森林 132
6.7.3 深度学习与艺术 132
6.8 小结 133
第7章 TensorFlow的高级框架 134
7.1 TFLearn 134
7.1.1 加载数据 134
7.1.2 构建网络模型 135
7.1.3 训练模型 135
7.2 Keras 135
7.2.1 Keras的优点 136
7.2.2 Keras的模型 136
7.2.3 Keras的使用 137
7.3 小结 141
第二篇 实战篇
第8章 第一个TensorFlow程序 144
8.1 TensorFlow的运行方式 144
8.1.1 生成及加载数据 144
8.1.2 构建网络模型 145
8.1.3 训练模型 145
8.2 超参数的设定 146
8.3 小结 147
第9章 TensorFlow在MNIST中的应用 148
9.1 MNIST数据集简介 148
9.1.1 训练集的标记文件 148
9.1.2 训练集的图片文件 149
9.1.3 测试集的标记文件 149
9.1.4 测试集的图片文件 150
9.2 MNIST的分类问题 150
9.2.1 加载数据 150
9.2.2 构建回归模型 151
9.2.3 训练模型 151
9.2.4 评估模型 152
9.3 训练过程的可视化 152
9.4 MNIST的卷积神经网络 156
9.4.1 加载数据 157
9.4.2 构建模型 157
9.4.3 训练模型和评估模型 159
9.5 MNIST的循环神经网络 161
9.5.1 加载数据 161
9.5.2 构建模型 161
9.5.3 训练数据及评估模型 163
9.6 MNIST的无监督学习 164
9.6.1 自编码网络 164
9.6.2 TensorFlow的自编码网络实现 165
9.7 小结 169
第10章 人脸识别 170
10.1 人脸识别简介 170
10.2 人脸识别的技术流程 171
10.2.1 人脸图像采集及检测 171
10.2.2 人脸图像预处理 171
10.2.3 人脸图像特征提取 171
10.2.4 人脸图像匹配与识别 172
10.3 人脸识别的分类 172
10.3.1 人脸检测 172
10.3.2 人脸关键点检测 173
10.3.3 人脸验证 174
10.3.4 人脸属性检测 174
10.4 人脸检测 175
10.4.1 LFW数据集 175
10.4.2 数据预处理 175
10.4.3 进行检测 176
10.5 性别和年龄识别 178
10.5.1 数据预处理 179
10.5.2 构建模型 181
10.5.3 训练模型 182
10.5.4 验证模型 184
10.6 小结 185
第11章 自然语言处理 186
11.1 模型的选择 186
11.2 英文数字语音识别 187
11.2.1 定义输入数据并预处理数据 188
11.2.2 定义网络模型 188
11.2.3 训练模型 188
11.2.4 预测模型 189
11.3 智能聊天机器人 189
11.3.1 原理 190
11.3.2 最佳实践 191
11.4 小结 200
第12章 图像与语音的结合 201
12.1 看图说话模型 201
12.1.1 原理 202
12.1.2 最佳实践 203
12.2 小结 205
第13章 生成式对抗网络 206
13.1 生成式对抗网络的原理 206
13.2 生成式对抗网络的应用 207
13.3 生成式对抗网络的实现 208
13.4 生成式对抗网络的改进 214
13.5 小结 214
第三篇 提高篇
第14章 分布式TensorFlow 216
14.1 分布式原理 216
14.1.1 单机多卡和分布式 216
14.1.2 分布式部署方式 217
14.2 分布式架构 218
14.2.1 客户端、主节点和工作节点的关系 218
14.2.2 客户端、主节点和工作节点的交互过程 220
14.3 分布式模式 221
14.3.1 数据并行 221
14.3.2 同步更新和异步更新 222
14.3.3 模型并行 224
14.4 分布式API 225
14.5 分布式训练代码框架 226
14.6 分布式最佳实践 227
14.7 小结 235
第15章 TensorFlow线性代数编译框架XLA 236
15.1 XLA的优势 236
15.2 XLA的工作原理 237
15.3 JIT编译方式 238
15.3.1 打开JIT编译 238
15.3.2 将操作符放在XLA设备上 238
15.4 JIT编译在MNIST上的实现 239
15.5 小结 240
第16章 TensorFlow Debugger 241
16.1 Debugger的使用示例 241
16.2 远程调试方法 245
16.3 小结 245
第17章 TensorFlow和Kubernetes结合 246
17.1 为什么需要Kubernetes 246
17.2 分布式TensorFlow在Kubernetes中的运行 247
17.2.1 部署及运行 247
17.2.2 其他应用 253
17.3 小结 254
第18章 TensorFlowOnSpark 255
18.1 TensorFlowOnSpark的架构 255
18.2 TensorFlowOnSpark在MNIST上的实践 257
18.3 小结 261
第19章 TensorFlow移动端应用 262
19.1 移动端应用原理 262
19.1.1 量化 263
19.1.2 优化矩阵乘法运算 266
19.2 iOS系统实践 266
19.2.1 环境准备 266
19.2.2 编译演示程序并运行 267
19.2.3 自定义模型的编译及运行 269
19.3 Android系统实践 273
19.3.1 环境准备 274
19.3.2 编译演示程序并运行 275
19.3.3 自定义模型的编译及运行 277
19.4 树莓派实践 278
19.5 小结 278
第20章 TensorFlow的其他特性 279
20.1 TensorFlow Serving 279
20.2 TensorFlow Flod 280
20.3 TensorFlow计算加速 281
20.3.1 CPU加速 281
20.3.2 TPU加速和FPGA加速 282
20.4 小结 283
第21章 机器学习的评测体系 284
21.1 人脸识别的性能指标 284
21.2 聊天机器人的性能指标 284
21.3 机器翻译的评价方法 286
21.3.1 BLEU 286
21.3.2 METEOR 287
21.4 常用的通用评价指标 287
21.4.1 ROC和AUC 288
21.4.2 AP和mAP 288
21.5 小结 288
附录A 公开数据集 289
附录B 项目管理经验小谈 292
缘起
2017年2月,TensorFlow的首届开发者峰会(2017 TensorFlow Dev Summit)在美国的加利福尼亚州举行。在会上,谷歌公司宣布正式发布TensorFlow 1.0版本。本书就是基于最新的1.1.0版本来介绍TensorFlow的技术解析和实战。
人工智能大潮来了。2016年,AlphaGo击败围棋大师李世石后,人工智能的应用仿佛一夜之间遍地开花。在科技潮流的大环境中,现在硅谷的用人单位越来越倾向于雇用既懂理论(思考者)又懂编程(执行者)的工程师。思考者的日常工作是阅读文献以求产生思路,而执行者则是编写代码来实现应用。但是要成为一名真正的工程师,学习机器学习是将思考者和执行者相结合的最快途径。
众所周知,人工智能是高级计算智能最宽泛的概念,机器学习是研究人工智能的一个工具,深度学习是机器学习的一个子集,是目前研究领域卓有成效的学习方法。深度学习的框架有很多,而TenforFlow将神经网络、算法这些平时停留在理论层面的知识,组织成一个平台框架,集合了神经网络的各个算法函数组成一个工具箱,让广大工程师可以专心建造自己的目标领域的“轮子”,而且TenforFlow是基于Python语言的,极易上手,这些优势迅速吸引了全世界的工程师。
我曾经也是一名前后端开发工程师,更专注于后端工程方向,而潜心研究深度学习和TensorFlow后,我被TensorFlow深深地迷住了。我发现它对各行各业将会有很深远的影响,并且会大大地解放劳动力。
与传统工程师的主要工作—实现产品需求或者设计高可用性架构不同,深度学习让人总结和抽象人类是怎样理解和看待问题的,并把这种方式教给机器。例如,在AlphaGo的研究中,人们需要先抽象出人类思考围棋的方式,然后将这种方式抽象成算法,并且配合人类大脑构造中神经网络的传输来实现这些算法。这时,工程师不会再写实现业务需求的逻辑代码,而是深度学习中将神经网络的“黑盒”和模型效果非常好却缺乏“可解释性”的特性相结合,在次次实验中尽量找出规律。记得美国前总统肯尼迪在宣布登月计划时曾说:“我们选择去月球,不是因为它简单,而是因为它困难。”今天,我相信,所有致力于人工智能方向的工程师之所以自豪地去研究,也不是因为它简单,而是因为它困难。我们研究它,是因为立足于现在这个点往前看,我们看不到已经建好的高楼大厦,看到的是一片等待我们去发掘的空旷的大地,而这个发掘过程需要的是十足的远见、决心、勇气和信心。
我在学习的过程中,由于深度学习的资料英文的居多,在理解上走了不少弯路。我把学到的知识和原理用心整理并用文字表述出来,写成这本书,希望能帮助没有接触过深度学习的广大程序员迅速上手,而不再被英文阅读理解挡在门外。说实话,TensorFlow的文档以及API接口是比较抽象的,再加上有一些从工程方向转入深度学习的人以前没有过深度学习的经验,所以如果带着工程类程序研发的思维去学习,甚至是实现业务逻辑需求的思维去学习,效果会很差。我希望这本书能为读者呈现一个通俗易懂、形象生动的TensorFlow,使读者迅速走入深度学习的世界。
在本书的写作过程中,为了能充分挤出时间,深夜当我困倦时,我常常让自己以最不舒服的方式入睡,希望能尽量少睡,以此增加仔细钻研的时间。有时我还会打开电视,将音量设置为静音,感受房间中电视背景光闪烁的动感,以此提醒自己时间的流动。刚开始我会坐在工作台前写作,累了又会抱着笔记本坐在床上继续写作,有时会写着写着不知不觉地睡着,凌晨三四点钟又醒来,感受黑夜里的那片安宁,心情顿时平静,再次投入到钻研中。每每有灵感,都非常激动;每每再次深入一个概念,增删易稿,把原理逼近真相地讲透,都让我非常有成就感。
面向的读者
我素来不爱探究数学公式的推导原理,对符号也很茫然,只是在必须要用时才对这些公式进行详细的推导,但是我却对这些原理在应用层面如何使用出奇地感兴趣。本书的目标就是带读者进入造“应用轮子”的大门。我会以最少的数学公式讲清楚如何用TensorFlow实现CNN、RNN,如何在实战中使用TensorFlow进行图片分类、人脸识别和自然语言处理等,以及如何将想训练的数据、想实现的应用亲手做出来。
同时,Python语言是一门相当高级的语言,有“可执行的伪代码”的美誉,可以用极少的代码行去完成一个复杂的功能,同时Python还有极为丰富的第三方库,让全世界很多工程师的开发工作变得异常简单。TensorFlow是用Python语言实现的框架,对很多学生来说非常容易上手,当然,如果是有开发经验的工程师,就更容易学会。如果说设计神经网络模型像是盖一栋大楼,那么TensorFlow强大的API用起来会让人感觉就像搭积木一样容易。因此,懂点儿Python,即便不怎么懂数学和算法原理也没关系,尽管跟着我一起学便是。
在翻译学上有一个概念叫作“平行语料库”,这个概念来自制作于公元前196年的古埃及罗塞塔石碑,石碑上用希腊文字、古埃及文字和当时的通俗体文字刻了同样的内容。在本书进行某个概念的讲解时,虽然是用Python代码作示范,但TensorFlow前端开发同时也支持多种上层语言,本书讲解过程中也会兼顾到用C++、Java、Go语言做开发的读者。
我希望,本书成为不同领域的读者进入人工智能领域的“垫脚石”,也希望所有的读者在人生路上能利用TensorFlow这个工具大放异彩。
我有很重的强迫症,因此,在编写本书的过程中,阅读了国内外很多与TensorFlow相关的资料,对本书的目录结构和框架经过很多次反复琢磨和调整;在写完之后,我又从头到尾地读过好几遍,并且和了解TensorFlow不同方面的人反复交流,根据建议又反复修改。这一切就是希望它能通俗易懂,把读者快速领入深度学习的大门。
这扇门的背后是异彩纷呈的,身怀这门技艺的人是应该非常自豪的,但这扇门的背后也是非常辛苦的,有时数据需要自己去想办法解决,还需要每天看论文,知晓最新科研成果,给自己以启发,反复地做实验,研究算法和模型,寻求提升和解决方法,经常会遇到在很长一段时间没有思路的情况。但是,只要做的东西是开创的,令人称赞的,就会开心地享受这个过程。
我专为本书读者建立了一个QQ交流群(320420130),希望在群里与大家深入讨论和交流学习过程中遇到的问题,也希望与大家分享最新的研究成果。
致谢
非常感谢谷歌大脑的工程师Jeff Dean,在得知我目前正在写这本书的时候,他特地发了邮件鼓励我:“听说你写了一本关于TensorFlow的书,真是太好了。希望你很享受学习TensorFlow的这段经历,并享受运用TensorFlow完成各种任务的这种体验。我非常高兴你为中文社区写这本书。” 这让我更坚定了传播TensorFlow深度学习的决心。
感谢百度硅谷AI实验室资深科学家王益老师关于AI on Kubernetes的建议。
感谢在百度工作时的同事陈后江,在写作过程中,我们有时在周末的深夜还进行讨论,印象最深的一次是在大冬天晚上,我们恰好都在外面,相互通了20多分钟电话,手冻得像冰棒似的。还要感谢童牧晨玄,他也是深度学习领域的爱好者,对关键的概念理解得非常透彻,能十分精准地讲出原理。
非常感谢《Redis实战》一书的译者黄健宏,他对技术写作有很丰富的经验。和他聊书总是能聊到凌晨以后,讨论到畅快处,甚至聊到天亮,他对问题的思考就像是“演杂技”一样,精准又恰到好处;同时,他又是一个非常让人感到温暖和踏实的朋友。
非常感谢iOS资深开发者唐巧,他在国内社区乐于分享的精神造福了很多的技术从业者,也正是他的推荐让我和本书的编辑杨海玲老师结下了这段美好的情谊。
非常感谢人民邮电出版社的杨海玲编辑,她最开始想到这个写作方向,我们一起一点一点地讨论书的内容,确认书的写作框架。在写作过程中,她的细致、专业、独到的见解也为本书增色不少。她对内容严谨和认真的态度令人动容。
非常感谢中科院计算所刘昕博士对本书第6章神经网络的发展提出的建议;感谢曾经的百度同事毕骁鹏对第8章、第9章、第13章、第14章、第20章、第21章提出的极为细致的建议,尤其是他擅长GPU和FPGA的部分,对本书的硬件加速提供了很多建议;感谢中科院智能信息处理重点实验室常务副主任山世光对第10章人脸识别部分提出的建议;感谢刘元震对本书第11章提出的建议;感谢我的好朋友容器专家苗立尧对第17章提出的建议;感谢百度地图导航专家梁腾腾对第19章移动端开发给予的极为细致的建议;感谢阿里巴巴数据科学与技术研究院高级专家孙亮博士对整本书的结构和知识点提出的建议。
感谢我的好朋友吴丽明,曾经那么帮助过我;感谢我的好朋友饶志臻先生,一直诱惑我买苹果设备,有个硬件发烧友真的很幸福;感谢我的闺蜜谢禹曦,好久没有和你聚餐了,甚是思念。
最后,还得感谢一位流行歌手—“火星弟弟”华晨宇,他在舞台上那一次次创意和感染力的演出深深地吸引了我,他在台下那认真刻苦作曲改歌的样子也激励着我,每次想到他的事迹,都给我极大的鼓励。
非常感谢本书的每一位读者,本书的完成过程非常辛苦但也充满甜蜜。我在“知乎”和网站上也会回答关于“人工智能”的各类问题,希望通过内容的更新与读者不断交流。另外,由于水平有限,在内容上表述上难免也有遗漏和疏忽,也恳请读者多多指正。
李嘉璇
2017年4月于北京石景山
这本书的内容看起来非常吸引人,我尤其关注它在“实战”方面的讲解。我在之前的学习中,虽然接触过一些 TensorFlow 的 API,但总感觉理论知识与实际应用之间存在一道鸿沟。我希望能在这本书中找到连接这道鸿沟的桥梁。我期待书中能够提供一系列完整的项目案例,从数据准备、模型设计、训练到最终的部署,能够完整地展示一个实际应用的开发流程。例如,我希望能看到如何使用 TensorFlow 构建一个图像分类器,或者一个文本生成模型。更进一步,我希望书中能分享一些关于如何选择合适的模型架构、如何进行超参数调优以及如何处理过拟合和欠拟合等实战经验。如果书中还能探讨一些关于如何利用 TensorFlow 部署模型到不同平台,例如服务器、移动端或者嵌入式设备上的方法,那将极大地提升这本书的实用价值。我希望通过阅读这本书,能够真正掌握将 TensorFlow 应用于解决实际问题的能力,而不是停留在理论层面。
评分这本书的名字听起来就充满了技术深度,让我对接下来的学习充满了期待。我之前在工作中遇到过一些需要利用机器学习解决的问题,但受限于对 TensorFlow 的理解不够深入,总是无法充分发挥其潜力。我特别希望这本书能帮助我突破瓶颈,掌握 TensorFlow 的高级用法,例如如何利用分布训练来加速模型的收敛,或者如何通过自定义算子来优化模型性能。对我而言,了解 TensorFlow 的内部运作机制至关重要,因为只有理解了“为什么”这样设计,我才能更灵活地运用它,解决那些非标准化的难题。这本书如果能提供一些关于 TensorFlow 性能调优的实操技巧,比如如何使用 TensorFlow Profiler 来分析模型瓶颈,以及如何针对不同硬件平台进行优化,那就太棒了。我还在思考,这本书是否会涉及一些 TensorFlow 在特定领域的应用,比如自然语言处理、计算机视觉或者强化学习中的前沿技术?如果能有这方面的深入探讨,那这本书的价值就更高了。总而言之,我期待这本书能带我进入 TensorFlow 的“内功心法”境界,让我不仅能“用”,更能“精通”。
评分这本书简直是为我量身定做的!我一直对深度学习很感兴趣,但苦于没有一个系统性的入门指南,总是碎片化地学习一些概念,感觉像是零散的积木,搭不出完整的模型。最近开始接触一些实际项目,发现理论知识的不足严重阻碍了我的进展。在网上搜寻了很久,偶然看到了这本书的介绍,虽然当时还没完全了解内容,但“技术解析与实战”这几个字就牢牢吸引了我。我希望这本书能像一位经验丰富的老师,把我从迷茫中引领出来,一步一步地教我如何理解 TensorFlow 的底层原理,而不是仅仅停留在 API 的调用层面。我期待它能深入浅出地讲解各种算法的实现细节,比如卷积神经网络是如何提取特征的,循环神经网络又是如何处理序列数据的,还有注意力机制的精妙之处。更重要的是,我希望书中能提供一些贴近实际应用场景的代码示例,让我能够亲手实践,将学到的知识融会贯通,真正做到学以致用。我尤其关注模型部署和性能优化的部分,因为这是将研究成果转化为实际产品的关键环节。如果这本书能在这方面有所建树,那无疑会大大提升我的实战能力。
评分我是一名初学者,对机器学习和深度学习领域充满了好奇,但又有些不知所措。看到这本书的名字,我希望它能成为我的“启蒙老师”。我不需要那些过于晦涩的数学推导,而是更倾向于能够理解 TensorFlow 的基本概念和常用功能。我想知道如何安装和配置 TensorFlow 环境,如何搭建一个简单的神经网络模型,以及如何训练和评估模型。这本书如果能提供一些清晰易懂的图示和代码示例,帮助我一步步地建立起对 TensorFlow 的直观认识,那将是非常有帮助的。我特别希望书中能够讲解一些常见的深度学习模型,比如多层感知机、卷积神经网络和循环神经网络,并展示如何在 TensorFlow 中实现它们。此外,如果书中还能包含一些关于如何处理数据集、进行数据预处理以及如何解决训练过程中可能遇到的常见问题的指导,那对我的学习过程将是莫大的帮助。我希望这本书能够让我对 TensorFlow 产生浓厚的兴趣,并为我未来深入学习打下坚实的基础。
评分坦白说,我对 TensorFlow 的了解还停留在“知道有这么个东西”的阶段,身边很多朋友都在用,而且效果都很好,所以我一直想找一本能够真正带我入门的书。这本书的名字听起来就比较“接地气”,而且“解析”和“实战”的组合,让我觉得它既有理论深度,又不失操作指导。我希望这本书能非常详细地介绍 TensorFlow 的核心组件,比如张量(Tensor)的概念,计算图(Computation Graph)的工作原理,以及各种优化器(Optimizer)和损失函数(Loss Function)的作用。我希望它能用非常清晰的语言解释这些概念,避免过于晦涩的术语。同时,我也非常期待书中能够提供很多实际操作的例子,从最简单的“Hello, TensorFlow”开始,逐步引导我完成一些有意思的任务。比如,如何用 TensorFlow 训练一个简单的线性回归模型,或者如何用它来实现一个基本的神经网络。如果书中还能介绍一些常用的数据加载和处理工具,以及如何进行模型的可视化,那对我这样一个新手来说,绝对是雪中送炭。
评分信赖京东。不错不错。
评分对于初学者来说了解一下没问题,但是对于已经入门的来讲里面的东西又讲的不是特别透彻,算是一个综述性的文献吧!
评分很简单,完全给外行的,意义不大
评分还没有开始看,不过这本书很不错
评分还没看,看介绍应该还可以吧
评分此用户未及时填写评价内容,系统默认好评!
评分惭愧,买了这么久还没拆封。习惯性给好评!
评分京东买东西方便快捷,价格实惠,快递员服务好,送货上门,超赞
评分不错不错不错不错不错不错不错不错不错
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.teaonline.club All Rights Reserved. 图书大百科 版权所有