Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations. Readers will learn how to structure Big data in a way that is amenable to ML algorithms; how to conduct research with ML algorithms on that data; how to use supercomputing methods; how to backtest your discoveries while avoiding false positives. The book addresses real-life problems faced by practitioners on a daily basis, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their particular setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.
##提到的分析都很實際, 雖然理論部分有難度,但是僅僅思路就很值得藉鑒
評分##翻過一點點。主要是講量化
評分##神書,有很多學術文章,其他書籍裏見不到的方法手段,即使不做machine learning,裏麵研究的方法也很有可藉鑒的地方
評分##嗬嗬,基本看不懂
評分##神書,有很多學術文章,其他書籍裏見不到的方法手段,即使不做machine learning,裏麵研究的方法也很有可藉鑒的地方
評分##比較失望,不過之前聽同事說起一些也算有心理準備瞭。
評分##二刷,大有成為未來quant必備書籍的潛質,作者寫這本書的時候還沒進AQR,後來就成為瞭AQR的head(現在是Bryan Kelly)
評分##翻過一點點。主要是講量化
評分##盛名之下,難過其實,難言之隱,不如不寫
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2026 book.teaonline.club All Rights Reserved. 圖書大百科 版權所有