图神经网络导论

图神经网络导论 pdf epub mobi txt 电子书 下载 2025

刘知远
图书标签:
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
第 1章 引论 1
1.1 设计动机 1
1.1.1 卷积神经网络 1
1.1.2 图嵌入 3
1.2 相关工作 3
第 2章 数学和图论基础 7
2.1 线性代数 7
2.1.1 基本概念 7
2.1.2 特征分解 10
2.1.3 奇异值分解 11
2.2 概率论 12
2.2.1 基本概念和公式 12
2.2.2 概率分布 14
2.3 图论 15
2.3.1 基本概念 16
2.3.2 图的代数表示 16
第3章 神经网络基础 19
3.1 神经元 19
3.2 后向传播 22
3.3 神经网络 24
第4章 基础图神经网络 27
4.1 概述 27
4.2 模型介绍 28
4.3 局限性 30
第5章 卷积图神经网络 33
5.1 基于谱分解的方法 33
5.1.1 Spectral Network 33
5.1.2 ChebNet 34
5.1.3 GCN 35
5.1.4 AGCN 36
5.2 基于空间结构的方法 37
5.2.1 Neural FP 37
5.2.2 PATCHY-SAN 38
5.2.3 DCNN 40
5.2.4 DGCN 40
5.2.5 LGCN 42
5.2.6 MoNet 44
5.2.7 GraphSAGE 45
第6章 循环图神经网络 47
6.1 GGNN 47
6.2 Tree-LSTM 49
6.3 Graph-LSTM 50
6.4 S-LSTM 51
第7章 图注意力网络 55
7.1 GAT 55
7.2 GaAN 57
第8章 图残差网络 59
8.1 Highway GCN 59
8.2 Jump Knowledge Network 60
8.3 DeepGCN 62
第9章 不同图类型的模型变体 65
9.1 有向图 65
9.2 异构图 66
9.3 带有边信息的图 68
9.4 动态图 70
9.5 多维图 72
第 10章 高级训练方法 75
10.1 采样 75
10.2 层级池化 78
10.3 数据增广 80
10.4 无监督训练 80
第 11章 通用框架 83
11.1 MPNN 83
11.2 NLNN 85
11.3 GN 87
第 12章 结构化场景应用 93
12.1 物理学 93
12.2 化学和生物学 95
12.2.1 分子指纹 95
12.2.2 化学反应预测 97
12.2.3 药物推荐 97
12.2.4 蛋白质和分子交互预测 98
12.3 知识图谱 99
12.3.1 知识图谱补全 99
12.3.2 归纳式知识图谱嵌入 100
12.3.3 知识图谱对齐 101
12.4 推荐系统 102
12.4.1 矩阵补全 103
12.4.2 社交推荐 104
第 13章 非结构化场景应用 105
13.1 图像领域 105
13.1.1 图像分类 105
13.1.2 视觉推理 108
13.1.3 语义分割 109
13.2 文本领域 110
13.2.1 文本分类 110
13.2.2 序列标注 111
13.2.3 神经机器翻译 112
13.2.4 信息抽取 113
13.2.5 事实验证 114
13.2.6 其他应用 116
第 14章 其他场景应用 117
14.1 生成模型 117
14.2 组合优化 119
第 15章 开放资源 121
15.1 数据集 121
15.2 代码实现 123
第 16章 总结 125
16.1 浅层结构 125
16.2 动态图 126
16.3 非结构化场景 126
16.4 可扩展性 126
参考文献 129
作者简介 148
· · · · · · (收起)

具体描述

清华大学刘知远力作,一书轻松构建GNN知识体系。

前沿:图神经网络(GNN)已风靡深度学习领域

全面:综述流行的GNN框架以及应用场景

新增:在英文版的基础上增补更多内容

力荐:多位AI先锋学者联袂推荐

精美:采用高档纯质纸,全彩印刷,适合珍藏

图神经网络(GNN)是基于深度学习的图数据处理方法,因其卓越的性能而受到广泛关注。本书全面介绍了GNN的基本概念、具体模型和实际应用。书中首先概述数学基础和神经网络以及图神经网络的基本概念,接着介绍不同种类的GNN,包括卷积图神经网络、循环图神经网络、图注意力网络、图残差网络,以及几个通用框架。此外,本书还介绍了GNN在结构化场景、非结构化场景和其他场景中的应用。读完本书,你将对GNN的最新成果和发展方向有较为透彻的认识。

用户评价

评分

##2021.11.24 第2章,基础数学概念,讲的不详实,只摆结果,但结果又少了很多批注,让即使是学过相关知识但是遗忘的我,还是想不起来,看不懂。难以想象小白看了是不是直接放弃。书里的字太大了,明明可以充实更多内容。 2022.2.3 个人认为这本书叫“导览”更合适。细节内容基本没有,让钻细节的人束手无策。但是GCN的总体发展确实都涵盖了,只不过都蜻蜓点水了。 读的过程深刻感受到人多力量大的现实。短短10年,大量人力物力财力涌入GCN,带来了现在无论自媒体还是各类书籍,都有各种深入浅出的资料可以学习。反观一直在慢慢走的基础科学,文献难度,不仅得慢慢抽丝剥茧还得训练自己有高视野分辨,大大增加了各种难度。 不如…来年也涌入潮流吧…… 等对DL有更多完备的实操知识后,再来温习这书。

评分

##大综述啊这是,感觉这种书还是要有点细节会比较好

评分

##非常简略,感觉只适合作为论文速查手册;扣一分给价格

评分

##这本书是综述性质的,适合用来快速构建知识体系。深入理解还是要去读论文的,但在读论文前如果想对这个领域有个宏观的了解,这本书应该就够。

评分

##可以当入门综述,但是太贵了

评分

##这本书确实如其名,导论,也确实是介绍一些基础知识,比较适合没什么基础的人拿来了解个大概。 老师和学生并列作者的时候,那书大概就是学生写的了。本来看完目录就不打算买了,冲着 刘知远老师还是买来看看。哎,刘老师,要爱惜自己的羽毛啊

评分

一直关注刘老师的微博,所以买来拜读一下。纸质和印刷都很好,至于内容,感觉好像是把哪个学生的论文笔记发出来了,或者好像翻译并扩充了一两篇综述。(建议刘老师以后发表这种东西的时候,还是把作者简介里面的“享有盛誉”四个字拿掉吧。)粉转路~

评分

##读了一半吧,只能从宏观上了解一下图神经网络,相当于对各个经典模型的简要介绍,原理还得自己查,想学懂学通看这本肯定不行,类似综述吧。不过印刷很好,这个算是优点吧

评分

##可以当论文查找的小册子,内容很浅

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.teaonline.club All Rights Reserved. 图书大百科 版权所有