内容简介
This book grew out of a 2-semester graduate course in laser physics and quan-tum optics. It requires a solid understanding of elementary electromagnetismas well as at least one, but preferably two, semesters of quantum mechanics.
内页插图
目录
Classical Electromagnetic Fields
1.1 Maxwells Equations in a Vacuum
1.2 Maxwells Equations in a Medium
1.3 Linear Dipole Oscillator
1.4 Coherence
1.5 Free-Electron Lasers
Problems
Classical Nonlinear Optics
2.1 Nonlinear Dipole Oscillator
2.2 Coupled-Mode Equations
2.3 Cubic Nonlinearity
2.4 Four-Wave Mixing with Degenerate Pump Frequencies
2.5 Nonlinear Susceptibilities
Problems
Quantum Mechanical Background
3.1 Review of Quantum Mechanics
3.2 Time-Dependent Perturbation Theory
3.3 Atom-Field Interaction for Two-Level Atoms
3.4 Simple Harmonic Oscillator
Problems
Mixtures and the Density Operator
4.1 Level Damping
4.2 The Density Matrix
4.3 Vector Model of Density Matrix
Problems
CW Field Interactions
5.1 Polarization of Two-Level Medium
5.2 Inhomogeneously Broadened Media
5.3 Counterpropagating Wave Interactions
5.4 Two-Photon Two-Level Model
5.5 Polarization of Semiconductor Gain Media
Problems
6 Mechanical Effects of Light
6.1 Atom-Field Interaction
6.2 Doppler Cooling
6.3 The Near-Resonant Kapitza-Dirac Effect
6.4 Atom Interferometry
Problems
Introduction to Laser Theory
7.1 The Laser Self-Consistency Equations
7.2 Steady-State Amplitude and Frequency
7.3 Standing-Wave, Doppler-Broadened Lasers
7.4 Two-Mode Operation and the Ring Laser
7.5 Mode Locking
7.6 Single-Mode Semiconductor Laser Theory
7.7 Transverse Variations and Gaussian Beams
Problems
Optical Bistability
8.1 Simple Theory of Dispersive Optical Bistability
8.2 Absorptive Optical Bistability
8.3 Ikeda Instability
Problems
9 Saturation Spectroscopy
9.1 Probe Wave Absorption Coefficient
9.2 Coherent Dips and the Dynamic Stark Effect
9.3 Inhomogeneously Broadened Media
9.4 Three-Level Saturation Spectroscopy
9.5 Dark States and Electromagnetically Induced Transparency
Problems
10 Three and Four Wave Mixing
10.1 Phase Conjugation in Two-Level Media
10.2 Two-Level Coupled Mode Coefficients
10.3 Modulation Spectroscopy
10.4 Nondegenerate Phase Conjugation by Four-Wave Mixing
Problems
11 Time-Varying Phenomena in Cavities
11.1 Relaxation Oscillations in Lasers
11.2 Stability of Single-Mode Laser Operation
11.3 Multimode Mode Locking
11.4 Single-Mode Laser and the Lorenz Model
Problems
Coherent Transients
12.1 Optical Nutation
12.2 Free Induction Decay
12.3 Photon Echo
12.4 Ramsey Fringes
12.5 Pulse Propagation and Area Theorem
12.6 Self-Induced Transparency
12.7 Slow Light
Problems
Field Quantization
13.1 Single-Mode Field Quantization
13.2 Multimode Field Quantization
13.3 Single-Mode Field in Thermal Equilibrium
13.4 Coherent States
13.5 Coherence of Quantum Fields
13.6 Quasi-Probability Distributions
13.7 SchrSdinger Field Quantization
13.8 The Gross-Pitaevskii Equation
Problems
Interaction Between Atoms and Quantized Fields
14.1 Dressed States
14.2 Jaynes-Cummlngs Model
14.3 Spontaneous Emission in Free Space
14.4 Quantum Beats
Problems
System-Reservoir Interactions
15.1 Master Equation
15.2 Fokker-Planck Equation
15.3 Langevin Equations
15.4 Monte-Carlo Wave Functions
15.5 Quantum Regression Theorem and Noise Spectra
Problems
Resonance Fluorescence
16.1 Phenomenology
16.2 Langevin Equations of Motion
16.3 Scattered Intensity and Spectrum
16.4 Connection with Probe Absorption
16.5 Photon Antibnnching
16.6 Off-Resonant Excitation
Problems
Squeezed States of Light
17.1 Squeezing the Coherent State
17.2 Two-Sidemode Master Equation
17.3 Two-Mode Squeezing
17.4 Squeezed Vacuum
Problems
Cavity Quantum ElectrodynAmlcs
18.1 Generalized Master Equation for the Atom-Cavity System
18.2 Weak Coupling Regime
18.3 Strong Coupling Regime
18.4 Velocity-Dependent Spontaneous Emission
18.5 Input-Output Formalism
Problems
Quantum Theory of a Laser
19.1 The Micromaser
19.2 Single Mode Laser Master Equation
19.3 Laser Photon Statistics and Linewidth
19.4 Quantized Sidemode Buildup
Problems
Entanglement, Bell Inequalities and Quantum Information
20.1 Einstein-Podolsky-Rosen Paradox and Bell Inequalities
20.2 Bipartite Entanglement
20.3 The Quantum Beam Splitter
20.4 Quantum Teleportation
20.5 Quantum Cryptography
20.6 Toward Quantum Computing
Problems
References
Index
精彩书摘
In this book we present the basic ideas needed to understand how laser lightinteracts with various forms of matter. Among the important consequencesis an understanding of the laser itself. The present chapter summarizes clas-sical electromagnetic fields, which describe laser light remarkably well. Thechapter also discusses the interaction of these fields with a medium con-sisting of classical simple harmonic oscillators. It is surprising how well thissimple model describes linear absorption, a point discussed from a quantummechanical point of view in Sect. 3.3. The rest of the book is concernedwith nonlinear interactions of radiation with matter. Chapter 2 generalizesthe classical oscillator to treat simple kinds of nonlinear mechanisms, andshows us a number of phenomena in a relatively simple context. Starting withChap. 3, we treat the medium quantum mechanically. The combination of aclassical description of light and a quantum mechanical description of matteris called the semiclassical approximation. This approximation is not alwaysjustified (Chaps. 13-19), but there are remarkably few cases in quantum op-tics where we need to quantize the field.
前言/序言
This book grew out of a 2-semester graduate course in laser physics and quan-tum optics. It requires a solid understanding of elementary electromagnetismas well as at least one, but preferably two, semesters of quantum mechanics.Its present form resulted from many years of teaching and research at theUniversity of Arizona, the Max-Planck-Institut fiir Quantenoptik, and theUniversity of Munich. The contents have evolved significantly over the years,due to the fact that quantum optics is a rapidly changing field. Because theamount of material that can be covered in two semesters is finite, a numberof topics had to be left out or shortened when new material was added. Im-portant omissions include the manipulation of atomic trajectories by light,superradiance, and descriptions of experiments.
好的,这是一本名为《激光原理与技术应用》的图书简介,字数约为1500字,内容详实,不涉及《量子光学基础(第4版)》中的任何主题。 --- 图书名称:《激光原理与技术应用》 内容简介 《激光原理与技术应用》是一本面向物理学、光学工程、电子信息工程、材料科学及相关领域的本科高年级学生、研究生以及工程技术人员的专业教材与参考书。本书旨在系统、深入地阐述现代激光技术的核心理论基础、关键器件的工作机制、以及在各个工程领域中的广泛应用。全书内容力求理论与实践紧密结合,从基础的光学和电磁学原理出发,逐步深入到复杂的激光系统设计与应用层面。 第一部分:激光基础理论与产生机理 本书首先建立起理解激光技术的理论框架。我们从经典的电磁波理论出发,回顾了光与物质相互作用的基本概念,特别是光场与原子、分子能级之间的相互作用。不同于量子光学中对微观量子态的精细描述,本部分侧重于宏观的粒子数密度、稳态粒子数反转的建立过程,以及激光振荡的阈值条件。 我们详细讨论了激光器中的几个核心要素:增益介质的选择、能级结构(如两能级、三能级和四能级系统)对激光输出特性的影响。特别是,书中对受激辐射、自发辐射和吸收这三种基本过程的定量描述进行了深入分析,并给出了增益系数的精确表达式。 光腔理论与模式分析 激光器的核心在于光学谐振腔。本书花费大量篇幅系统介绍了光学腔的稳定性判据,包括ABCD矩阵法在腔内光束传输分析中的应用。我们详细讨论了平凹腔、共振腔、马氏腔等典型腔型的特性,以及其对激光模式分布、光束质量的影响。 在模式分析部分,本书聚焦于腔内电磁场分布,深入讲解了腔内横模(TEMnm)和纵模(Longitudinal Modes)的概念。我们不仅推导了TEM00模作为理想低阶模式的形成条件,还对高阶横模的特性、模式竞争以及单模输出的实现方法进行了详尽阐述。这些内容对于激光器性能的优化和光束整形至关重要。 第二部分:关键激光器技术与特性 本部分是本书的工程实践核心,详细介绍了目前主流的几类激光器技术,涵盖了固态激光器、半导体激光器、气体激光器和光纤激光器。 固态激光器与脉冲技术 针对固态激光器,我们重点分析了Nd:YAG、钛宝石(Ti:Sapphire)等关键增益材料的能级结构、斯托克斯位移及其热效应。书中详尽介绍了激光晶体的泵浦机制、热透镜效应的量化分析及其抑制方法。 在脉冲激光技术方面,本书深入探讨了实现超短脉冲的两种主要机制:锁模(Mode-Locking)和Q开关(Q-Switching)。对于锁模,我们从数学上推导了克尔透镜锁模(Kerr-Lens Mode-Locking, KLM)和可饱和吸收体锁模的基本原理,并分析了这些技术如何产生飞秒甚至阿秒量级的脉冲。对于Q开关,我们详细分析了机械、电光和声光Q开关的工作流程及其对脉冲能量和峰值功率的提升效果。 半导体激光器与光纤激光器 半导体激光器是现代通信和传感技术的基础。本书从半导体PN结的能带结构入手,解释了注入载流子如何产生受激辐射。书中详尽分析了法布里-珀罗腔、分布反馈(DFB)激光器和垂直腔面发射激光器(VCSEL)的结构、工作特性及其温度敏感性。特别是,对半导体激光器的噪声特性(如相对强度噪声RIN)的分析,为通信应用奠定了理论基础。 光纤激光器因其优异的光束质量和高效率,在工业界占据重要地位。本书重点介绍了掺铒光纤、掺镱光纤的增益特性,以及环形腔、单模光纤的结构设计。我们详细探讨了光纤激光器的功率放大机制、自发辐射限制以及光纤光栅的应用。 第三部分:激光束传播、控制与测量 激光束的传播特性和准确的测量是工程应用的前提。 激光束传播与非线性光学 本书详细讨论了高斯光束的传播特性,包括束腰、束散度、焦深等关键参数。我们使用菲涅尔衍射理论和角谱法对激光束的远场和近场分布进行了精确描述。此外,书中还引入了激光束在介质中传播时可能发生的非线性效应,例如自聚焦效应、自相位调制(SPM)等,这些是实现高强度脉冲传输和超连续谱产生的基础。 激光束的控制与测量 激光技术的应用高度依赖于对光束质量的精确控制与测量。我们详细介绍了激光光束质量因子(M²因子)的定义、测量方法,以及如何通过透镜组、空间滤波器和自适应光学系统对光束进行整形和校正。 在测量方面,本书系统介绍了光功率计、光谱分析仪、光束分析仪等核心仪器的原理与操作规范。对于脉冲激光,时间剖面测量技术(如光电导天线、二阶/三阶自相关测量)被详细介绍,用以确定脉冲的持续时间和啁啾情况。 第四部分:激光技术在工程中的应用 本书的最后部分聚焦于前沿和成熟的工业应用。 工业应用:切割、焊接与表面处理 我们详细分析了高功率激光在材料加工中的物理过程,包括激光熔化、气化、等离子体形成以及热影响区(HAZ)的控制。书中对CO2激光、光纤激光器在厚板切割和精密焊接中的效率和质量控制进行了对比分析。 生物医学应用与光学传感 在生物医学领域,本书介绍了激光在诊断成像(如共聚焦显微镜、光学相干层析OCT)中的应用原理,以及低功率激光对生物组织的非损伤性作用机制。在传感方面,我们探讨了激光多普勒测速技术在流体测量中的应用,以及激光雷达(LIDAR)在环境监测与三维成像中的工作模式。 结语 《激光原理与技术应用》力求以清晰的逻辑结构、严谨的数学推导和丰富的工程实例,为读者构建一个全面、实用的激光技术知识体系。本书的编写风格注重工程实用性,旨在培养读者独立分析、设计和操作各类激光系统的能力。 ---