內容簡介
This book grew out of a 2-semester graduate course in laser physics and quan-tum optics. It requires a solid understanding of elementary electromagnetismas well as at least one, but preferably two, semesters of quantum mechanics.
內頁插圖
目錄
Classical Electromagnetic Fields
1.1 Maxwells Equations in a Vacuum
1.2 Maxwells Equations in a Medium
1.3 Linear Dipole Oscillator
1.4 Coherence
1.5 Free-Electron Lasers
Problems
Classical Nonlinear Optics
2.1 Nonlinear Dipole Oscillator
2.2 Coupled-Mode Equations
2.3 Cubic Nonlinearity
2.4 Four-Wave Mixing with Degenerate Pump Frequencies
2.5 Nonlinear Susceptibilities
Problems
Quantum Mechanical Background
3.1 Review of Quantum Mechanics
3.2 Time-Dependent Perturbation Theory
3.3 Atom-Field Interaction for Two-Level Atoms
3.4 Simple Harmonic Oscillator
Problems
Mixtures and the Density Operator
4.1 Level Damping
4.2 The Density Matrix
4.3 Vector Model of Density Matrix
Problems
CW Field Interactions
5.1 Polarization of Two-Level Medium
5.2 Inhomogeneously Broadened Media
5.3 Counterpropagating Wave Interactions
5.4 Two-Photon Two-Level Model
5.5 Polarization of Semiconductor Gain Media
Problems
6 Mechanical Effects of Light
6.1 Atom-Field Interaction
6.2 Doppler Cooling
6.3 The Near-Resonant Kapitza-Dirac Effect
6.4 Atom Interferometry
Problems
Introduction to Laser Theory
7.1 The Laser Self-Consistency Equations
7.2 Steady-State Amplitude and Frequency
7.3 Standing-Wave, Doppler-Broadened Lasers
7.4 Two-Mode Operation and the Ring Laser
7.5 Mode Locking
7.6 Single-Mode Semiconductor Laser Theory
7.7 Transverse Variations and Gaussian Beams
Problems
Optical Bistability
8.1 Simple Theory of Dispersive Optical Bistability
8.2 Absorptive Optical Bistability
8.3 Ikeda Instability
Problems
9 Saturation Spectroscopy
9.1 Probe Wave Absorption Coefficient
9.2 Coherent Dips and the Dynamic Stark Effect
9.3 Inhomogeneously Broadened Media
9.4 Three-Level Saturation Spectroscopy
9.5 Dark States and Electromagnetically Induced Transparency
Problems
10 Three and Four Wave Mixing
10.1 Phase Conjugation in Two-Level Media
10.2 Two-Level Coupled Mode Coefficients
10.3 Modulation Spectroscopy
10.4 Nondegenerate Phase Conjugation by Four-Wave Mixing
Problems
11 Time-Varying Phenomena in Cavities
11.1 Relaxation Oscillations in Lasers
11.2 Stability of Single-Mode Laser Operation
11.3 Multimode Mode Locking
11.4 Single-Mode Laser and the Lorenz Model
Problems
Coherent Transients
12.1 Optical Nutation
12.2 Free Induction Decay
12.3 Photon Echo
12.4 Ramsey Fringes
12.5 Pulse Propagation and Area Theorem
12.6 Self-Induced Transparency
12.7 Slow Light
Problems
Field Quantization
13.1 Single-Mode Field Quantization
13.2 Multimode Field Quantization
13.3 Single-Mode Field in Thermal Equilibrium
13.4 Coherent States
13.5 Coherence of Quantum Fields
13.6 Quasi-Probability Distributions
13.7 SchrSdinger Field Quantization
13.8 The Gross-Pitaevskii Equation
Problems
Interaction Between Atoms and Quantized Fields
14.1 Dressed States
14.2 Jaynes-Cummlngs Model
14.3 Spontaneous Emission in Free Space
14.4 Quantum Beats
Problems
System-Reservoir Interactions
15.1 Master Equation
15.2 Fokker-Planck Equation
15.3 Langevin Equations
15.4 Monte-Carlo Wave Functions
15.5 Quantum Regression Theorem and Noise Spectra
Problems
Resonance Fluorescence
16.1 Phenomenology
16.2 Langevin Equations of Motion
16.3 Scattered Intensity and Spectrum
16.4 Connection with Probe Absorption
16.5 Photon Antibnnching
16.6 Off-Resonant Excitation
Problems
Squeezed States of Light
17.1 Squeezing the Coherent State
17.2 Two-Sidemode Master Equation
17.3 Two-Mode Squeezing
17.4 Squeezed Vacuum
Problems
Cavity Quantum ElectrodynAmlcs
18.1 Generalized Master Equation for the Atom-Cavity System
18.2 Weak Coupling Regime
18.3 Strong Coupling Regime
18.4 Velocity-Dependent Spontaneous Emission
18.5 Input-Output Formalism
Problems
Quantum Theory of a Laser
19.1 The Micromaser
19.2 Single Mode Laser Master Equation
19.3 Laser Photon Statistics and Linewidth
19.4 Quantized Sidemode Buildup
Problems
Entanglement, Bell Inequalities and Quantum Information
20.1 Einstein-Podolsky-Rosen Paradox and Bell Inequalities
20.2 Bipartite Entanglement
20.3 The Quantum Beam Splitter
20.4 Quantum Teleportation
20.5 Quantum Cryptography
20.6 Toward Quantum Computing
Problems
References
Index
精彩書摘
In this book we present the basic ideas needed to understand how laser lightinteracts with various forms of matter. Among the important consequencesis an understanding of the laser itself. The present chapter summarizes clas-sical electromagnetic fields, which describe laser light remarkably well. Thechapter also discusses the interaction of these fields with a medium con-sisting of classical simple harmonic oscillators. It is surprising how well thissimple model describes linear absorption, a point discussed from a quantummechanical point of view in Sect. 3.3. The rest of the book is concernedwith nonlinear interactions of radiation with matter. Chapter 2 generalizesthe classical oscillator to treat simple kinds of nonlinear mechanisms, andshows us a number of phenomena in a relatively simple context. Starting withChap. 3, we treat the medium quantum mechanically. The combination of aclassical description of light and a quantum mechanical description of matteris called the semiclassical approximation. This approximation is not alwaysjustified (Chaps. 13-19), but there are remarkably few cases in quantum op-tics where we need to quantize the field.
前言/序言
This book grew out of a 2-semester graduate course in laser physics and quan-tum optics. It requires a solid understanding of elementary electromagnetismas well as at least one, but preferably two, semesters of quantum mechanics.Its present form resulted from many years of teaching and research at theUniversity of Arizona, the Max-Planck-Institut fiir Quantenoptik, and theUniversity of Munich. The contents have evolved significantly over the years,due to the fact that quantum optics is a rapidly changing field. Because theamount of material that can be covered in two semesters is finite, a numberof topics had to be left out or shortened when new material was added. Im-portant omissions include the manipulation of atomic trajectories by light,superradiance, and descriptions of experiments.
好的,這是一本名為《激光原理與技術應用》的圖書簡介,字數約為1500字,內容詳實,不涉及《量子光學基礎(第4版)》中的任何主題。 --- 圖書名稱:《激光原理與技術應用》 內容簡介 《激光原理與技術應用》是一本麵嚮物理學、光學工程、電子信息工程、材料科學及相關領域的本科高年級學生、研究生以及工程技術人員的專業教材與參考書。本書旨在係統、深入地闡述現代激光技術的核心理論基礎、關鍵器件的工作機製、以及在各個工程領域中的廣泛應用。全書內容力求理論與實踐緊密結閤,從基礎的光學和電磁學原理齣發,逐步深入到復雜的激光係統設計與應用層麵。 第一部分:激光基礎理論與産生機理 本書首先建立起理解激光技術的理論框架。我們從經典的電磁波理論齣發,迴顧瞭光與物質相互作用的基本概念,特彆是光場與原子、分子能級之間的相互作用。不同於量子光學中對微觀量子態的精細描述,本部分側重於宏觀的粒子數密度、穩態粒子數反轉的建立過程,以及激光振蕩的閾值條件。 我們詳細討論瞭激光器中的幾個核心要素:增益介質的選擇、能級結構(如兩能級、三能級和四能級係統)對激光輸齣特性的影響。特彆是,書中對受激輻射、自發輻射和吸收這三種基本過程的定量描述進行瞭深入分析,並給齣瞭增益係數的精確錶達式。 光腔理論與模式分析 激光器的核心在於光學諧振腔。本書花費大量篇幅係統介紹瞭光學腔的穩定性判據,包括ABCD矩陣法在腔內光束傳輸分析中的應用。我們詳細討論瞭平凹腔、共振腔、馬氏腔等典型腔型的特性,以及其對激光模式分布、光束質量的影響。 在模式分析部分,本書聚焦於腔內電磁場分布,深入講解瞭腔內橫模(TEMnm)和縱模(Longitudinal Modes)的概念。我們不僅推導瞭TEM00模作為理想低階模式的形成條件,還對高階橫模的特性、模式競爭以及單模輸齣的實現方法進行瞭詳盡闡述。這些內容對於激光器性能的優化和光束整形至關重要。 第二部分:關鍵激光器技術與特性 本部分是本書的工程實踐核心,詳細介紹瞭目前主流的幾類激光器技術,涵蓋瞭固態激光器、半導體激光器、氣體激光器和光縴激光器。 固態激光器與脈衝技術 針對固態激光器,我們重點分析瞭Nd:YAG、鈦寶石(Ti:Sapphire)等關鍵增益材料的能級結構、斯托剋斯位移及其熱效應。書中詳盡介紹瞭激光晶體的泵浦機製、熱透鏡效應的量化分析及其抑製方法。 在脈衝激光技術方麵,本書深入探討瞭實現超短脈衝的兩種主要機製:鎖模(Mode-Locking)和Q開關(Q-Switching)。對於鎖模,我們從數學上推導瞭剋爾透鏡鎖模(Kerr-Lens Mode-Locking, KLM)和可飽和吸收體鎖模的基本原理,並分析瞭這些技術如何産生飛秒甚至阿秒量級的脈衝。對於Q開關,我們詳細分析瞭機械、電光和聲光Q開關的工作流程及其對脈衝能量和峰值功率的提升效果。 半導體激光器與光縴激光器 半導體激光器是現代通信和傳感技術的基礎。本書從半導體PN結的能帶結構入手,解釋瞭注入載流子如何産生受激輻射。書中詳盡分析瞭法布裏-珀羅腔、分布反饋(DFB)激光器和垂直腔麵發射激光器(VCSEL)的結構、工作特性及其溫度敏感性。特彆是,對半導體激光器的噪聲特性(如相對強度噪聲RIN)的分析,為通信應用奠定瞭理論基礎。 光縴激光器因其優異的光束質量和高效率,在工業界占據重要地位。本書重點介紹瞭摻鉺光縴、摻鐿光縴的增益特性,以及環形腔、單模光縴的結構設計。我們詳細探討瞭光縴激光器的功率放大機製、自發輻射限製以及光縴光柵的應用。 第三部分:激光束傳播、控製與測量 激光束的傳播特性和準確的測量是工程應用的前提。 激光束傳播與非綫性光學 本書詳細討論瞭高斯光束的傳播特性,包括束腰、束散度、焦深等關鍵參數。我們使用菲涅爾衍射理論和角譜法對激光束的遠場和近場分布進行瞭精確描述。此外,書中還引入瞭激光束在介質中傳播時可能發生的非綫性效應,例如自聚焦效應、自相位調製(SPM)等,這些是實現高強度脈衝傳輸和超連續譜産生的基礎。 激光束的控製與測量 激光技術的應用高度依賴於對光束質量的精確控製與測量。我們詳細介紹瞭激光光束質量因子(M²因子)的定義、測量方法,以及如何通過透鏡組、空間濾波器和自適應光學係統對光束進行整形和校正。 在測量方麵,本書係統介紹瞭光功率計、光譜分析儀、光束分析儀等核心儀器的原理與操作規範。對於脈衝激光,時間剖麵測量技術(如光電導天綫、二階/三階自相關測量)被詳細介紹,用以確定脈衝的持續時間和啁啾情況。 第四部分:激光技術在工程中的應用 本書的最後部分聚焦於前沿和成熟的工業應用。 工業應用:切割、焊接與錶麵處理 我們詳細分析瞭高功率激光在材料加工中的物理過程,包括激光熔化、氣化、等離子體形成以及熱影響區(HAZ)的控製。書中對CO2激光、光縴激光器在厚闆切割和精密焊接中的效率和質量控製進行瞭對比分析。 生物醫學應用與光學傳感 在生物醫學領域,本書介紹瞭激光在診斷成像(如共聚焦顯微鏡、光學相乾層析OCT)中的應用原理,以及低功率激光對生物組織的非損傷性作用機製。在傳感方麵,我們探討瞭激光多普勒測速技術在流體測量中的應用,以及激光雷達(LIDAR)在環境監測與三維成像中的工作模式。 結語 《激光原理與技術應用》力求以清晰的邏輯結構、嚴謹的數學推導和豐富的工程實例,為讀者構建一個全麵、實用的激光技術知識體係。本書的編寫風格注重工程實用性,旨在培養讀者獨立分析、設計和操作各類激光係統的能力。 ---