内容简介
《生物化学技术原理及应用(第五版)/普通高等教育“十二五”规划教材》是在第四版的基础上,结合近几年来科学进展修订而成。《生物化学技术原理及应用(第五版)/普通高等教育“十二五”规划教材》共分3编,20章:第一编概述蛋白质、核酸等生命大分子物质的制备方法及基本要点;第二编讲解从动物、植物和微生物材料中分离纯化上述物质的常见方法,如离子交换层析、疏水层析、亲和层析、聚焦层析、凝胶过滤、高效液相色谱、沉淀法等;第三编介绍鉴定生命大分子物质所涉及的相关方法,如同位素标记(包括DNA、RNA和蛋白质的标记)、基因重组、DNA序列测定、生物芯片、聚合酶链反应(包括DNA和RNA的扩增)、电泳(包括各种聚丙烯酰胺凝胶电泳和琼脂糖凝胶电泳等)、免疫分析(包括多克隆和单克隆抗体的制备、免疫扩散、各种免疫电泳、固相免疫吸附法——酶联免疫吸附法和免疫印迹法等)、薄层与薄膜层析、气相色谱、分光光度法和离心法等。《生物化学技术原理及应用(第五版)/普通高等教育“十二五”规划教材》在阐明各类方法基本原理的同时,还讲述了主要操作、注意事项及应用实例,在每章末尾附有思考题和主要参考文献,《生物化学技术原理及应用(第五版)/普通高等教育“十二五”规划教材》共有图、表360余幅。
目录
第五版前言
第四版前言
第三版前言
第一编概述
第一章 生命大分子物质的制备
第一节 材料的选择与处理
一、材料的选择
二、材料的处理
第二节 测定方法的确立
一、目的与要求
二、常用的测定方法
第三节 细胞破碎
一、机械破碎
二、溶胀和自溶
三、化学处理
四、生物酶降解
第四节 抽提
一、抽提的含义
二、抽提有效成分的影响因子
第五节 浓缩
一、沉淀法
二、吸附法
三、超过滤法
四、透析法
五、离心法
六、干燥法
第六节 纯化方案的设计与评价
一、纯化方案的设计
二、纯化方案的评价
第七节 有效成分纯度和性质的分析
第八节 应用实例
一、高纯度人转铁蛋白的制备
二、叶绿体的提取与45SRNA的制备
三、细菌质粒DNA的提取
思考题
参考文献
第二编纯化方法
第二章 沉淀法
第一节 基本原理与沉淀类型
一、基本原理
二、制备蛋白质
三、制备核酸
第二节 应用实例
一、脾磷酸二酯酶的纯化
二、细菌染色体DNA的制备
三、蔗糖酶的初步纯化
思考题
参考文献
第三章 吸附层析
第一节 吸附柱层析
一、常用术语
二、基本原理
三、吸附剂
四、洗脱液
五、层析柱的制备与层析操作
六、应用与实例
第二节 薄层层析
一、操作及注意事项
二、应用实例
第三节 聚酰胺薄膜层析
一、基本原理
二、应用实例
思考题
参考文献
第四章 疏水层析
第一节 基本原理
一、疏水作用
二、吸附剂
第二节 操作与应用
一、层析柱的制备
二、加样与洗脱
三、应用实例
思考题
参考文献
第五章 离子交换层析
第一节 基本原理
第二节 离子交换剂的分类及性质
一、分类
二、性质
第三节 离子交换剂与缓冲液的选择
一、离子交换剂的选择
二、缓冲液的选择
三、加样量的确定
第四节 操作
一、离子交换剂的处理、再生和转型
二、分离物质的交换
三、物质的洗脱与收集
第五节 应用
一、制备、纯化生命物质
二、测定蛋白质的等电点
思考题
参考文献
第六章 凝胶过滤
第一节 凝胶的分类及性质
一、葡聚糖凝胶
二、琼脂糖凝胶
三、聚丙烯酰胺凝胶
四、Sephacryl
五、Superdex
第二节 基本原理
第三节 操作
一、凝胶的选择和处理
二、凝胶柱的制备
三、加样与洗脱
四、凝胶柱的再生及保存
第四节 应用
一、脱盐和浓缩
二、分离生命物质
三、去除热源物质
四、测定分子质量
五、其他
思考题
参考文献
第七章 亲和层析
第一节 基本原理
第二节 操作
一、载体的选择
二、配体的选择
三、亲和吸附剂的制备
四、特异性吸附
五、分离大分子物质
六、亲和层析柱的再生
第三节 提高吸附剂的操作容量
一、在配体和载体间引入“手臂”
二、增加配体取代的程度
三、配体与载体衍生物以最少的键连接
四、载体多孔性的影响
五、其他
第四节 应用实例
一、纯化大分子物质
二、研究酶的结构与功能
三、实例
思考题
参考文献
第八章 聚焦层析
第一节 基本原理
一、多缓冲剂和多缓冲交换剂
二、聚焦层析原理
第二节 操作
一、多缓冲剂的选择
二、多缓冲交换剂用量的确定
三、多缓冲交换剂的处理
四、样品的准备
五、加样和洗脱
六、样品中多缓冲剂的去除
第三节 应用
一、分离模型蛋白质
二、分离复杂物质
三、鉴定某些酶的性质
思考题
参考文献
第九章 高效液相色谱
第一节 基本原理
一、高效液相色谱仪
二、固定相
第二节 反相高效液相色谱
一、固定相、流动相和色谱柱
二、纯化糖基化白蛋白肽片段
第三节 应用
一、定性和定量分析
二、测定酶活性
三、测定蛋白质分子质量
四、分离核酸和蛋白质
思考题
参考文献
第十章 固定化的酶与微生物
第一节 制备方法
一、固定化酶
二、固定化微生物
三、生物传感器
第二节 制品的性质
一、酶的相对活性
二、活性曲线与最适pH
三、稳定性
四、米氏常数
五、其他
第三节 应用实例
一、工业方面
二、医学方面
三、生化分析方面
四、应用实例
思考题
参考文献
第三编鉴定方法
第十一章 标记
第一节 核酸标记
一、基本原理
二、标记方法
第二节 蛋白质标记
一、机制
二、类型
三、标记物制备
第三节 标记物的纯化与鉴定
一、标记物纯化
二、探针的鉴定
第四节 应用实例
一、cDNA组学和蛋白质组学
二、激酶的磷酸化和脱磷酸化
三、蛋白质半衰期的测定
思考题
参考文献
第十二章 重组DNA
第一节 重组DNA的部件
一、工具酶
二、载体
三、目的基因
第二节 重组
一、黏性末端连接法
二、平端连接法
三、平黏连接法
四、TA连接法
五、同聚物加尾连接法
六、人工接头连接法
第三节 DNA扩增
一、重组DNA导入宿主细胞
二、重组子的筛选与鉴定
三、表达产物的纯化
第四节 应用实例
一、分离总RNA和mRNA
二、反转录合成第一链cDNA
三、PCR扩增及其产物纯化
四、PCR产物的克隆
五、重组质粒的提取及分析
思考题
参考文献
第十三章 DNA序列测定
第一节 双脱氧链终止法
一、基本原理
二、载体系统
三、测序试剂
四、测序操作
五、变性电泳
六、序列读取
第二节 PCR法
一、直接测序
二、循环测序
三、应用实例
第三节 化学降解法
一、测序原理
二、具体操作
第四节 新一代测序法
一、第二代测序法
二、第三代测序法
思考题
参考文献
第十四章 生物芯片
第一节 基因芯片
一、基本原理和工作流程
二、制备及操作
三、应用实例
第二节 蛋白质芯片
一、原理及特点
二、制备与操作
三、应用实例
第三节 芯片实验室
一、结构与制作
二、应用实例
思考题
参考文献
第十五章 聚合酶链反应
第一节 基本原理及操作系统
一、扩增DNA
二、扩增RNA
第二节 PCR的类型
一、普通PCR
二、原位PCR
三、反转录PCR
四、反向PCR
五、不对称PCR
六、巢式PCR
七、彩色PCR
第三节 应用
一、筛选目的基因
二、直接测序
三、标记DNA探针
四、寻找新基因
五、检测血液和组织成分
六、检测环境中的致病菌与指示菌
思考题
参考文献
第十六章 电泳
第一节 基本原理
一、泳动度概念
二、影响泳动度的因子
第二节 聚丙烯酰胺凝胶电泳
一、基本原理
二、不连续垂直板状和柱状凝胶电泳
三、连续的垂直板凝胶的电泳
四、线性和阶梯式梯度的板状凝胶电泳
五、双向电泳
第三节 琼脂糖凝胶电泳
一、缓冲液的配制
二、琼脂糖胶板的制备
三、加样和电泳
四、观察
第四节 应用
一、测定分子质量
二、测定蛋白质等电点
三、鉴定微量物质
四、诊断疾病(转移电泳)
思考题
参考文献
第十七章 免疫分析
第一节 抗体的性质、制备及纯化
一、抗体的性质
二、多克隆抗体的制备
三、单克隆抗体的制备
四、抗体的检测
五、抗体的纯化
第二节 抗原抗体反应与应用
一、凝集反应
二、免疫扩散
三、免疫电泳
四、固相免疫吸附(含ELISA)
五、免疫微球测定
思考题
参考文献
第十八章 气相色谱
第一节 基本原理
一、常用术语
二、塔板与速率理论
第二节 气相色谱仪的构造
一、载气流速的控制和测量
二、进样系统
三、恒温室
四、色谱柱
五、检定器
第三节 操作
一、操作要点
二、条件的选择
第四节 定性和定量检测
一、定性检测
二、定量检测
第五节 应用
一、分析蛋白质和氨基酸
二、分析核酸
三、分析糖类物质
四、分析脂肪酸
五、分析农药
思考题
参考文献
第十九章 分光光度法
第一节 基本原理
一、光谱
二、物质结构与光谱的关系
三、光吸收的基本规律——比尔朗伯定律
第二节 分光光度计的结构及类型
一、主要结构
二、类型
第三节 应用
一、定性分析
二、含量测定
三、参数测定
四、物质结构的分析
思考题
参考文献
第二十章 离心法
第一节 基本原理
一、沉降现象
二、离心力
三、离心法
四、沉降系数
第二节 离心机的类型及构造
一、制备型离心机
二、分析型离心机
第三节 应用
一、离心机的操作概述
二、应用实例
三、测定沉降系数
四、分离纯化生命物质
思考题
参考文献
参考文献
附录
中英文缩写词
精彩书摘
《生物化学技术原理及应用(第五版)/普通高等教育“十二五”规划教材》:
第一编 概述
第一章 生命大分子物质的制备
生命大分子物质通常是指动物、植物和微生物在进行生长发育、新陈代谢时,所形成的蛋白质(包括酶)和核酸等有机化合物的总称。它不仅是一些生物科学工作者研究、探索的主要对象,还与广大从事化工、医学和食品等学科的人员密切相关。在这些方面,特别是科研方面,随着人类基因组的30亿碱基对测序工作的完成,生命科学研究已进入后基因组时代(研究的焦点将从基因的序列转移到功能方面)。为鉴定大量未知蛋白质(酶)的结构和功能,蛋白质研究也将进入一个空前活跃的时期,因此分离纯化和测试分析蛋白质技术显得十分重要。首先,蛋白质与核酸(包括DNA、rRNA、mRNA和tRNA等)相比,蛋白质的结构(包括一级结构和空间结构)更具有奇妙独特的复杂性和艺术性。它是由20多个不同性质(或极性)的氨基酸交互排列而成,不但潜在的数量多(约100亿个),而且相互间差异大。而核酸的结构,虽然也有异乎寻常的多样性,但是,它是由结构相似、理化性质接近的4个碱基交互排列而成的,且有一定规律可循。相对而言,蛋白质的分离、纯化和鉴定有较大的难度和特殊性。而核酸的分离、制备和鉴定则比较容易,有捷径可走。其次,蛋白质和核酸类物质通常是与自然界存在的诸多不同化合物结合在一起,或者是不同蛋白质、不同核酸自身相互组合在一起出现的,加之它们稳定性较差(如离体后的多数酶)、含量相对偏低,使提取分离过程变得更加困难。最后,提取生命物质的材料五花八门、千变万化,所用的方法通用性较差,尤其是提取分离蛋白质的方法更是如此,这也给制备工作带来了麻烦和困惑。尽管如此错综复杂,却也不是无轨迹可寻。另外,在实践中,确实非常需要一定纯度或较高纯度的生命大分子物质。因此,人们在细心观察、认真归纳制备这些物质的程序时,也发现了不少类似操作和共同点,对制备生命大分子物质很有裨益。本章将以蛋白质和核酸为主线讨论其制备的共有特质和一般过程,其中包括材料的选择与处理、测定方法的确立、有效成分的抽提、粗品的纯化和纯品的鉴定(分别见后面各编评述)等相关步骤。
第一节 材料的选择与处理
一、材料的选择在进行材料的选择时,常会提及有效成分一词。所谓有效成分是指欲纯化的某种单一的生命大分子物质。而有效成分以外的其他物质则统称杂质。在动物、植物和微生物材料中,有效成分的含量一般较少,如胰脏中胰岛素的含量小于其鲜重的百万分之一。此外,有效成分稳定性较差,大多数对酸、碱、高温和高浓度有机溶剂等因子较敏感,而且容易被微生物分解变质。因此,提取有效成分的成功与否,与选用的材料关系密切。如果选用的材料不同,有效成分的含量就不一样;选用的材料即使相同,但是部位、生长期、生长地区或存放时间不同,有效成分的含量也不尽相同。总的来说,材料选择应遵循的原则是:有效成分含量多、稳定性好;来源丰富、保持新鲜;提取容易、工艺简单;杂质有综合利用价值等。在实践过程中则需抓主要矛盾,全面考虑,综合权衡。例如,胰岛素,从含量看,在牛胰脏中比猪的高,但从我国实际出发,全国猪的饲养头数远比牛多,加之牛可拉车、耕田,因此制备胰岛素一般不选用牛胰脏而选用猪胰脏作材料。磷酸单酯酶,就含量而言,虽然在胰脏、肝脏和脾脏中较丰富,但是因其与磷酸二酯酶共存,进行提纯时,这两种酶很难分开,所以实践中常选用含磷酸单酯酶少、几乎不含磷酸二酯酶的前列腺作材料。
二、材料的处理
选择到合适的材料后,应及时使用,否则所需的有效成分会部分甚至全部被破坏变性,从而影响收得率。例如,从猪肠黏膜提取肝素时,如果用新鲜材料,每千克小肠可得肝素钠5万~6万U。如将材料置25℃以上的室温存放约1h,肝素钠的含量会显著下降。其原因是,猪小肠内的大量微生物(2 5×108~3×108个/g)不停地繁殖(如大肠杆菌约20min繁殖一次),有的会产生降解肝素的酶系。若选择的材料难于立即使用时,一般应采用冰冻或干燥等方法处理,同时还应将易于去掉的非需物质(如脂类)除去。因常选用的动物、植物和微生物材料的特性各异,故处理要求也不完全相同。
(一) 动物脏器
1 冰冻从刚宰杀的牲畜得到的脏器(脑组织、心脏等)要迅速剥去脂肪和筋皮等结缔组织,立即冲洗干净。若不能马上抽提、纯化时,应及时移至-10℃冰库(可短时间保存)或-70℃低温冰箱(数月不变质)贮存。
脏器中常含有较多的脂肪,该物质不仅容易氧化酸败,导致原料变质,还会影响纯化操作和制品得率。脱脂操作可在提纯前进行,也可在提纯过程中进行,具体实施应视材料而定。一般脱脂的方法有:人工剥去脏器外的脂肪组织;浸泡在脂溶性的有机溶剂(如丙酮、乙醚)中脱脂;采用快速加热(50℃左右)、快速冷却的方法,使熔化的油滴冷却后凝聚成油块而被除去;利用油脂分离器使油脂与水溶液得以分离。
2 干燥
对于像脑下垂体一类的小组织,可置丙酮液中脱水,干燥后磨粉贮存备用;对于含耐高温有效成分(如肝素)的肠黏膜,可在沸水中蒸煮处理,烘干后能长期保存。
(二)植物组织
由室内栽培或野外采集的植物材料,若是植物(如菠菜、芹菜)的叶片,需用清水洗净方可使用,或置-30~-4℃冰箱贮藏,可在10h内使用;若是植物的种子,则需泡胀或粉碎后才可使用。如材料中含油脂较多时,也要进行脱脂处理。
(三)微生物
由于微生物具有种类多、繁殖快、培养简便、诱变容易和不受季节影响等优点,因此,它已成为制备生命大分子物质的主要材料之一。当选用的微生物接种于适当的培养液培养一段时间后,用离心法收集到的上清液,即可用于制备胞外酶和某些辅基等有效成分。而收集到的菌体,经破细胞处理后则可从中提取其他有效成分,如胞内酶。前者可置低温下短时间贮存,后者可制成冻干粉,在4℃保存。例如,收集的黄杆菌(Flavobacterium sp.)P32细胞,用0 05mol/L Tris�睭Cl缓冲液(pH7 5)洗两次,进行冻干处理可得到红棕色的干粉。将其置4℃保存3个月,检测降解对硫磷水解酶活力的影响时,发现无明显影响。
第二节 测定方法的确立
一、目的与要求当纯化的对象即某一有效成分选定后,首先碰到的问题是,此物质在哪些材料中含有?哪些材料中含量较丰富?其次是在从选定的材料提纯此物质的过程中,杂质是否逐渐减少?纯度是否逐渐增加?也就是说,所用的纯化方案是基本合理或部分合理,还是根本不妥?要回答这些问题,就必须确立一种专一、灵敏和简便快速的测定方法。不然,很难对其作出准确、定量的判断。
第一节提到,有效成分在原材料中含量较低。这一事实决定了抽提液和纯化的前一阶段溶液中有效成分的比活性较小,加之此时测定的样品很多(每一步骤都须测定),因而确立的测定方法应简单、灵敏、省时、快速,除此之外,还要有较好的专一性,否则,所测得的结果误差大,不可靠。例如,在从原料中纯化某一酶蛋白时,测定其含量的依据常常是在酶与底物反应后,以产物形成或底物降低的数量来表示的。若选择的底物是非专一性的,或者选择的产物不是待测酶特异催化形成的,这样测出的数值就包含有原料中杂质所消耗的底物或形成的产物,影响了酶活性的真实性。
二、常用的测定方法
(一)光谱法由于不同生命大分子物质与相应波长的光会发生特定的作用,而依据作用结果即可推断出被测物质的含量和部分理化性质。人们称这类测定方法为光谱法。该法通常包括紫外光谱法、可见光光谱法、荧光光谱法和浊度法等。紫外光谱法是利用某些生物大分子物质具有吸收紫外线的性质而建立的一种方法;可见光光谱法是利用生命大分子物质的一些特殊结构先与相关试剂反应生成不同颜色后,借助可见光检测物质而建立的一种方法;荧光光谱法是利用有些生命大分子物质自身可以吸收特定光波的能量后,依赖发出荧光的特性而建立的一种方法;浊度法是利用测定不同浓度的稀悬浮液,在不被吸收的光波长条件下,测定其表观吸光值而建立的一种方法。
将待测物(如核酸、蛋白质)配制成一定浓度的溶液后,注入石英杯,移至相应波长的分光光度计中,即可从测定的吸光值换算出待测物的含量。
1 紫外光谱法
1)测定核酸含量构成核酸的碱基组分是分光光度计测定核酸含量的依据。在
生物化学技术原理及应用(第五版)/普通高等教育“十二五”规划教材 下载 mobi epub pdf txt 电子书 格式