内容简介
Since the early work of Gauss and Riemann, differential geometry has grown into a vast network of ideas and approaches, encompassing local considerations such as differential invariants and jets as well as global ideas, such as Morse theory and characteristic classes: In this volume of the Encyclopaedia, the authors give a tour of the principal areas and methods of modern differential geometry. The book is structured so that the reader may choose parts of the text to read and still take away a completed picture ofsome area ofdifferential geometry Beginning at the introductory level with curves in Euclidean
space, the sections become more challenging. arriving finally at the advanced topics which form the greatest part of the book:transformation groups. the geometry of differential equations,geometric structures, the equivalence problem the geometry ofelliptic operators, G-structures and contact geometry. As an overview of the major current methods of differential geometry, EMS 28 is a map of these different ideas which explains the interesting points at every
stop, The authors' intention is that the reader should gain a new understanding of geometry from the process of reading this survey.
内页插图
目录
Preface
Chaptcr 1.Introduction:A Metamathematical View of Differential Geometry
1.Algebra and Geometry—theDuality of the Intellect
2.Two Examples:Algebraic Geometry,Propositional Logic and Set Theory
3.On the History of Geometry
4.Differential Calculus and Commutative Algebra
5.What is Differential Geometry?
Chapter2.The Geometry of Surfaces
1.Curves in Euclidean Space
1.1.Curves
1.2.The Natural Parametrization and the intrinsic Geometry of Curves
1.3.Curvature.The Frenet Frame
1.4.Affine and Unimodular Properties of Curves
2.Surfaces in E3
2.1.Surfaces Charts
2.2.The First Quadratic Form.The Intrinsic Geometry of a Surface
2.3.The Second Quadratic Form.The Extrinsic Geometry of a Surface
2.4.Derivation Formulae.The First and Second Quadratic Forms
2.5.The Geodesic Curvature of Curves Geodesics
2.6.Parallel Transport of Tangent Vectors on a Surface.Covariant Differentiation.Connection 2.7.Deficiencies of Loops,the“Theorema Egregium”of Gauss and the Gauss—Bonnet Formula 2.8.The Link Between the First and Second Quadratic Forms.
The Gauss Equation and the Peterson—Mainardi—Codazzi Equations
2.9.The Moving Frame Method in the Theory of Surfaces
2.10.A Complete System of lnvariants of a Surface
3.Multidimensional Surfaces
3.1.n—Dimensional Surfaces in En+p.
3.2.Covariant Differentiation and the Second Quadratic Form
3.3.Normal Connection on a Surface.The Derivation Formulae
3.4.The Multidimensional Version of the Gauss—Peterson Mainardi—Codazzi Equations.Ricci’sTheorem 3.5.The Geometrical Meaning and Algebraic Properties of the Curvature Tensor 3.6.Hypersurfaces.Mean Curvatures.The Fonnulae of Steiner and Weyl 3.7.Rigidity of Multidimensional Surfaces
Chapter 3.The Field Approach of Riemann
1.From the Intrinsic Geometry of Gauss to Riemannian Geometrv
1.1.The Essence of Riemann’s Approach
1.2.Intrinsic Description of Surfaces
1.3.The Field Point of View on Geometry
1.4.Two Examples
2.Manifolds and Bundles(the BasicConcepts)
2.1 Why Do We Need Manifolds?
2.2.Definition of a Manifold
2.3.The Category of Smooth Manifolds
2.4.Smooth Bundles
3.Tensor Fields and Differential Forms
3.1.Tangent Vectors
3.2.The Tangent Bundle and Vector Fields
3.3 Covectors,the Cotangent Bundle and Differential Forms of the First Degree 3.4.Tensors and Tensor Fields
3.5.The Behaviour of Tensor Fields Under Maps.The Lie Derivative
3.6.The Exterior Differential.The de Rham Complex
4.Riemannian Manifolds and Manifolds with a Linear COnnectiOn
4.1.Riemannian Metric
4.2.Construction of Riemannian Metrics
4.3.Linear Connections
4.4.Normal Coordinates
4.5.A Riemannian Manifold as a Metric Space Completeness
4.6.Curvature
4.7.The Algebraic Structure of the Curvature Tensor.The Ricci and Weyl Tensors and Scalar Curvature
4.8.Sectional Curvature.Spaces of Constant Curvature
4.9.The Holonomy Group and the de Rham Decomposition
4.10.The Berger—Claass—ification of Holonomy Groups·Kahler and Quaternion Manifolds.
5.The Geometry of Symbols
5.1.Differential Operators in Bundles
5.2.Symbols of Differential Operators
5.3.Connections and Quantization.
5.4.Poisson Bracketsand Hamiltonian Formalism
5.5.Poissonian and Symplectic Structures
5.6.Left.Invariant Hamiltonian Formalism on Lie Groups
Chapter 4.The Group Approach of Lie and Klein.The Geometry of Transformation Groups.
1.Symmetries in Geometry
1.1.Symmetries and Groups
1.2.Symmetry and Integrability
1.3.KIein’S Erlangen Programme.
2.Homogeneous Spaces
2.1.Lie Groups
2.2.The Action ofthe Lie Group on a Manifold
2.3.Correspondence Between Lie Groups and Lie Algebras
2.4.Infinitesimal Description of Homogeneous Spaces
2.5.The Isotropy Representation.Order of a Homogeneous Space
2.6.The Principle of Extension.Invariant Tensor Fields on Homogeneous Spaces
2.7.Primitive and Imprimitive Actions
3.Invariant Connections on a Homogeneous Space
3.1.A General Description
3.2.Reductive Homogeneous Spaces
3.3.Atline Symmetric Spaces
4.Homogeneous Riemannian Manifolds
4.1.Infinitesimal Description
4.2.Thc Link Between Curvature and the Structure of the GrouP of Motions
4.3.Naturally Reductive Spaces
4.4.Symmetric Riemannian Spaces
4.5.Holonomy Groups of Homogeneous Riemannian Manifolds
Kahlerian and Quaternion Homogeneous Spaces
5.Homogeneous Symplectic Manifolds
5.1.Motivation and Definitions
5.2.Examoles
5.3.Homogeneous Hamiltonian Manifolds
5.4.Homogeneous Symplectic Manifolds and Affine Actions
Chapter 5.The Geometry of Differential Equations
1.Elementary Geometry of a First—Order Differential Equation
1.1 Ordinary Differential Equations
1.2.The General Case.
1.3.Geometrical Integration
2.Contact Geometry and Lie’s Theory of First.Order Equations
2.1.Contact Structure on J1
2.2.Generalized Solutions and Integral Manifolds ofthe Contact Structure 2.3 Contact Transformations
2.4.Contact Vector Fields
2.5 The Cauchy Problem
2.6.Symmetries.Local Equivalence
3.The Geometry ofDistributions
3.1 Distributions
3.2.A Distribution of Codimension I.The Theorem Of DarbOux.
3.3.Involutive Systems of Equations
3.4.The Intrinsic and Extrinsic Geometrv of First_Order Differential Equations 4.Spaces ofJets and Differential Equations
4.1.Jets.
4.2.The Caftan Distribution
4.3 Lie Transformations
4.4 Intrinsic and ExtrinsicGeometries
5.The Theory of Compatibility and Formal Integrabilitv
5.1.Prolongations ofDifferential Equations
5.2.Formal Integrability
5.3.Symbols
5.4.The Spencer δ—Cohomology
5.5.Involutivity
6.Cartan’S Theory of Systems in Involution
6.1 PolarSystems,Characters and Genres
6.2.Involutivity and Cartan’S Existence Theorems
7.The Geometry of Infinitely Prolonged Equations
7.1.What is a Differential Equation?
7.2.Infinitely Prolonged Equations
7.3.C—Maps and Higher Symmetries
Chapter 6.Geometric Structures
1.GeometricQuantities and Geometric Structures
1.1 What is a Geometric Quantity?
1.2.Bundles of Frames and Coframes
1.3.Geometric Quantities(Structures)as Equivariant Functions
on the Manifold of Coframes
1.4.Examples.Infinitesimally Homogeneous Geometric Structures
1.5.Natural Geometric Structures and the Principle of Covanance
……
Chapter7.The Equivalence Problem,Differential Invariants and Pseudogroups
Chapter8.Global Aspects of Differential Geometry
Commentary on the References
References
Author Index
Subject Index
前言/序言
要使我国的数学事业更好地发展起来,需要数学家淡泊名利并付出更艰苦地努力。另一方面,我们也要从客观上为数学家创造更有利的发展数学事业的外部环境,这主要是加强对数学事业的支持与投资力度,使数学家有较好的工作与生活条件,其中也包括改善与加强数学的出版工作。
科学出版社影印一批他们出版的好的新书,使我国广大数学家能以较低的价格购买,特别是在边远地区工作的数学家能普遍见到这些书,无疑是对推动我国数学的科研与教学十分有益的事。
这次科学出版社购买了版权,一次影印了23本施普林格出版社出版的数学书,就是一件好事,也是值得继续做下去的事情。大体上分一下,这23本书中,包括基础数学书5本,应用数学书6本与计算数学书12本,其中有些书也具有交叉性质。这些书都是很新的,2000年以后出版的占绝大部分,共计16本,其余的也是1990年以后出版的。这些书可以使读者较快地了解数学某方面的前沿,例如基础数学中的数论、代数与拓扑三本,都是由该领域大数学家编著的“数学百科全书”的分册。对从事这方面研究的数学家了解该领域的前沿与全貌很有帮助。按照学科的特点,基础数学类的书以“经典”为主,应用和计算数学类的书以“前沿”为主。这些书的作者多数是国际知名的大数学家,例如《拓扑学》一书的作者诺维科夫是俄罗斯科学院的院士,曾获“菲尔兹奖”和“沃尔夫数学奖”。这些大数学家的著作无疑将会对我国的科研人员起到非常好的指导作用。
当然,23本书只能涵盖数学的一部分,所以,这项工作还应该继续做下去。更进一步,有些读者面较广的好书还应该翻译成中文出版,使之有更大的读者群。
总之,我对科学出版社影印施普林格出版社的部分数学著作这一举措表示热烈的支持,并盼望这一工作取得更大的成绩。
好的,这是一本关于国外数学名著系列(续一 影印版)55:几何I 微分几何基本思想与概念的图书简介,内容详实,旨在介绍该书的核心内容和价值,同时避免提及其他书籍。 --- 《国外数学名著系列(续一 影印版)55:几何I 微分几何基本思想与概念》 导言:现代几何学的基石 本书精选自享誉国际的数学经典译丛,聚焦于微分几何这一现代数学的基石领域。微分几何作为连接代数、分析与拓扑学的桥梁,深刻地影响了从理论物理到工程应用的诸多领域。本卷《几何I:微分几何基本思想与概念》旨在为读者构建一个清晰、严谨且直观的微分几何入门框架,是深入理解该学科的必读之作。它并非对所有现代几何分支的穷尽,而是精心挑选并阐述了理解更高级概念所必需的初始工具和核心思想。 内容精要与结构解析 本书的编写脉络清晰,结构严谨,力求在数学的抽象性与几何的直观性之间找到完美的平衡点。全书围绕流形(Manifolds)这一中心概念展开,通过层层递进的方式,引导读者逐步掌握微分几何的语言和基本运算。 第一部分:预备知识与欧几里得空间中的曲线与曲面 在正式进入流形理论之前,作者首先为读者夯实了必要的预备知识。这部分内容回顾了必要的微积分知识,特别是多变量微积分中的微分形式和张量分析的初步概念。随后,内容转向对欧几里得空间 $mathbb{R}^n$ 中曲线和曲面的经典研究。 曲线论(Curves in $mathbb{R}^3$): 详细阐述了曲线的参数化、挠率(Torsion)和曲率(Curvature)的概念。此处的核心在于弗雷内-塞雷(Frenet-Serret)公式的推导与应用,该公式是理解空间曲线局部几何性质的根本工具。读者将深入理解如何用局部坐标系来描述曲线的弯曲程度。 曲面论(Surfaces in $mathbb{R}^3$): 这是本书的第一个高潮点。曲面的研究需要引入第一、第二基本形式。第一基本形式揭示了曲面的内蕴度量性质(如长度、面积),而第二基本形式则描述了曲面在三维空间中的外在弯曲情况。作者细致地解释了主曲率(Principal Curvatures)、高斯曲率(Gaussian Curvature)和平均曲率(Mean Curvature)的定义及其物理意义。特别是,对高斯曲率的深入探讨,为后续理解高斯绝妙定理(Theorema Egregium)奠定了基础,该定理强调了曲率作为内蕴几何量的重要性。 第二部分:微分流形的基础构建 本书的核心价值在于其对光滑流形(Smooth Manifolds)的系统化介绍。这是从经典几何迈向现代微分几何的关键一步。 拓扑流形与光滑结构: 作者首先定义了拓扑流形,强调了其作为“局部欧几里得空间”的本质。随后引入了坐标卡(Coordinate Charts)、过渡函数(Transition Maps),并定义了光滑结构。这种严谨的定义确保了流形上微分运算的可行性。 切空间与向量场: 在流形上定义导数需要一个局部化的概念,即切空间(Tangent Space) $T_pM$。本书详细讲解了切向量的定义——通常通过导数算子的方式引入——并解释了它如何捕捉了流形上曲线的瞬时方向。在此基础上,向量场(Vector Fields)被定义为光滑地在每一点指定一个切向量的场,这是描述物理量(如速度、力场)的必备工具。 张量场与张量代数: 为了更有效地处理和转化几何量,张量理论是不可或缺的。本书介绍了协变(Covariant)和反变(Contravariant)张量的区别与性质,并探讨了张量场的代数运算,为后续的微分运算做铺垫。 第三部分:微分形式与流形上的积分 几何的分析性研究离不开微分形式。本部分是连接几何与微积分的桥梁。 微分形式(Differential Forms): 遵循德拉姆上同调(de Rham Cohomology)的思想路径,本书引入了1-形式和$k$-形式的概念,并将它们视为切空间的对偶空间上的张量。重点阐述了外微分(Exterior Derivative) $d$ 算子的定义及其关键性质,特别是$d^2=0$的深刻内涵。 积分与Stokes定理: 在流形上进行积分,需要依赖于定向的概念。本书详细讨论了定向(Orientation),并引入了定向流形上的积分。最终,作者展示了经典的Stokes定理在流形上的推广形式,这是将局部微分运算与全局积分性质联系起来的最强大的工具,是微分几何分析部分的顶点。 本书的特色与价值 本影印版继承了原著严谨的数学论证风格,同时辅以大量的几何直观解释,使其既适合作为专业数学研究生的初级教材,也适合希望掌握现代几何学核心概念的物理学家和工程师。 1. 概念的深度与广度适中: 作为“几何I”,它精准地定位在基础概念的建立上,避免了陷入过于专业的代数拓扑或黎曼几何的细节,确保读者能够扎实地掌握微分几何的“骨架”。 2. 清晰的推导路径: 书中对关键定理(如高斯绝妙定理、Stokes定理)的推导过程力求详尽,帮助读者理解“为什么”这些概念是这样定义的。 3. 现代视角的引入: 尽管本书立足于经典基础,但其对流形、向量场和微分形式的处理方式,完全采用了现代微分几何的语言,为读者向更高级的黎曼几何或辛几何过渡提供了坚实的理论基础。 阅读本书,读者将获得一套强有力的数学语言,足以审视和描述弯曲空间中的各种几何现象,是进入现代几何世界不可或缺的“第一把钥匙”。