内容简介
The book contains a comprehensive account of the structure and classification of Lie groups and finite-dimensional Lie algebras(including semisimple, solvable, and of general type). In particular,a modem approach to the description of automorphisms and gradings of semisimple Lie algebras is given. A special chapter is devoted to models ofthe exceptional Lie algebras. The book contains many tables and will serve as a reference. At the same time many results are accompanied by short proofs.Onishchik and Vinberg are internationally known specialists in their field; they are also well known for their monograph "Lie Groups and Algebraic Groups (Springer-Verlag 1990).The book will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.
内页插图
目录
Introduction
Chapter 1.General Theorems
1.Lie's and Engel's Theorems
1.1.Lie's Theorem
1.2.Generalizations of Lie's Theorem
1.3.Engel's Theorem and Corollaries to It
1.4.An Analogue of Engel's Theorem in Group Theory
2.The Caftan Criterion
2.1.Invariant Bilinear Forms
2.2.Criteria of Solvability and Semisimplicity
2.3.Factorization into Simple Factors
3.Complete Reducibility of Representations and Triviality of the Cohomology of Semisimple Lie Algebras
3.1.Cohomological Criterion of Complete Reducibility
3.2.The Casimir Operator
3.3.Theorems on the Triviality of Cohomology
3.4.Complete Reducibility of Representations
3.5.Reductive Lie Algebras
4.Levi Decomposition
4.1.Levi's Theorem
4.2.Existence of a Lie Group with a Given Tangent Algebra
4.3.Malcev's Theorem
4.4.Classification of Lie Algebras with a Given Radical
5.Linear Lie Groups
5.1.Basic Notions
5.2.Some Examples
5.3.Ado's Theorem
5.4.Criteria of Linearizability for Lie Groups.Linearizer
5.5.Sufficient Linearizability Conditions
5.6.Structure of Linear Lie Groups
6.Lie Groups and Algebraic Groups
6.1.Complex and Real Algebraic Groups
6.2.Algebraic Subgroups and Subalgebras
6.3.Semisimple and Reductive Algebraic Groups
6.4.Polar Decomposition
6.5.Chevalley Decomposition
7.Complexification and Real Forms
7.1.Complexification and Real Forms of Lie Algebras
7.2.Complexification and Real Forms of Lie Groups
7.3.Universal Complexification of a Lie Group
8.Splittings of Lie Groups and Lie Algebras
8.1.Malcev Splittable Lie Groups and Lie Algebras
8.2.Definition of Splittings of Lie Groups and Lie Algebras
8.3.Theorem on the Existence and Uniqueness of Splittings
9.Caftan Subalgebras and Subgroups.Weights and Roots
9.1.Representations of Nilpotent Lie Algebras
9.2.Weights and Roots with Respect to a Nilpotent Subalgebra
9.3.Caftan Subalgebras
9.4.Caftan Subalgebras and Root Decompositions of Semisimple Lie Algebras
9.5.Caftan Subgroups
Chapter 2.Solvable Lie Groups and Lie Algebras
1.Examples
2.Triangular Lie Groups and Lie Algebras
3.Topology of Solvable Lie Groups and Their Subgroups
3.1.Canonical Coordinates
3.2.Topology of Solvable Lie Groups
3.3.Aspherical Lie Groups
3.4.Topology of Subgroups of Solvable Lie Groups
4.Nilpotent Lie Groups and Lie Algebras
4.1.Definitions and Examples
4.2.Malcev Coordinates
4.3.Cohomology and Outer Automorphisms
5.Nilpotent Radicals in Lie Algebras and Lie Groups
5.1.Nilradical
5.2.Nilpotent Radical
5.3.Unipotent Radical
6.Some Classes of Solvable Lie Groups and Lie Algebras
6.1.Characteristically Nilpotent Lie Algebras
6.2.Filiform Lie Algebras
6.3.Nilpotent Lie Algebras of Class 2
6.4.Exponential Lie Groups and Lie Algebras
6.5.Lie Algebras and Lie Groups of Type (I)
7.Linearizability Criterion for Solvable Lie Groups
Chapter 3.Complex Semisimple Lie Groups and Lie Algebras
1.Root Systems
1.1.Abstract Root Systems
1.2.Root Systems of Reductive Groups
1.3.Root Decompositions and Root Systems for Classical Complex Lie Algebras
1.4.Weyl Chambers and Simple Roots
1.5.Borel Subgroups and Subalgebras
1.6.The Weyl Group
1.7.The Dynkin Diagram and the Cartan Matrix
1.8.Classification of Admissible Systems of Vectors and Root Systems
1.9.Root and Weight Lattices
1.10.Chevalley Basis
2.Classification of Complex Semisimple Lie Groups and Their Linear Representations
2.1.Uniqueness Theorems for Lie Algebras
2.2.Uniqueness Theorem for Linear Representations
2.3.Existence Theorems
2.4.Global Structure of Connected Semisimple Lie Groups
2.5.Classification of Connected Semisimple Lie Groups
2.6.Linear Representations of Connected Reductive Algebraic Groups
2.7.Dual Representations and Bilinear Invariants
2.8.The Kernel and the Image of a Locally Faithful Linear Representation
2.9.The Casimir Operator and Dynkin Index
2.10.Spinor Group and Spinor Representation
3.Automorphisms and Gradings
3.1.Description of the Group of Automorphisms
3.2.Quasitori of Automorphisms and Gradings
3.3.Homogeneous Semisimple and Nilpotent Elements
3.4.Fixed Points of Automorphisms
3.5.One—dimensional Tori of Automorphisms and Z—gradings
3.6.Canonical Form of an Inner Semisimple Automorphism
3.7.Inner Automorphisms of Finite Order and Zm—gradings of Inner Type
3.8.Quasitorus Associated with a Component of the Group of Automorphisms
3.9.Generalized Root Decomposition
3.10.Canonical Form of an Outer Semisimple Automorphism
3.11.Outer Automorphisms of Finite Order and Zm—gradings of Outer Type
3.12.Jordan Gradings of Classical Lie Algebras
3.13.Jordan Gradings of Exceptional Lie Algebras
Chapter 4.Real Semisimple Lie Groups and Lie Algebras
1.Classification of Real Semisimple Lie Algebras
1.1.Real Forms of Classical Lie Groups and Lie Algebras
1.2.Compact Real Form
1.3.Real Forms and Involutory Automorphisms
1.4.Involutory Automorphisms of Complex Simple Algebras
1.5.Classification of Real Simple Lie Algebras
2.Compact Lie Groups and Complex Reductive Groups
2.1.Some Properties of Linear Representations of Compact Lie Groups
2.2.Selfoadjointness of Reductive Algebraic Groups
2.3.Algebralcity of a Compact Lie Group
2.4.Some Properties of Extensions of Compact Lie Groups
2.5.Correspondence Between Real Compact and Complex Reductive Lie Groups
2.6.Maximal Tori in Compact Lie Groups
3.Cartan Decomposition
3.1.Cartan Decomposition of a Semisimple Lie Algebra
3.2.Caftan Decomposition of a Semisimple Lie Group
3.3.Conjugacy of Maximal Compact Subgroups of Semisimple Lie Groups
3.4.Topological Structure of Lie Groups
3.5.Classification of Connected Semisimple Lie Groups
3.6.Linearizer of a Semisimple Lie Group
4.Real Root Decomposition
4.1.Maximal R—Diagonalizable Subalgebras
4.2.Real Root Systems
4.3.Satake Diagrams
4.4.Split Real Semisimple Lie Algebras
4.5.Iwasawa Decomposition
4.6.Maximal Connected Triangular Subgroups
4.7.Cartan Subalgebras of a Real Semisimple Lie Algebra
5.Exponential Mapping for Semisimple Lie Groups
5.1.Image of the Exponential Mapping
5.2.Index of an Element of a Lie Group
5.3.Indices of Simple Lie Groups
Chapter 5.Models of Exceptional Lie Algebras
1.Models Associated with the Cayley Algebra
1.1, Cayley Algebra
1.2.The Algebra G2
1.3.Exceptional Jordan Algebra
1.4.The Algebra F4
1.5.The Algebra E6
1.6.The Algebra E7
1.7.Unified Construction of Exceptional Lie Algebras
2.Models Associated with Gradings
Chapter 6.Subgroups and Subalgebras of Semisimple Lie Groups and Lie Algebras
1.Regular Subalgebras and Subgroups
1.1.Regular Subalgebras of Complex Semisimple Lie Algebras
1.2.Description of Semisimple and Reductive Regular Subalgebras
1.3.Parabolic Subalgebras and Subgroups
1.4.Examples of Parabolic Subgroups and Flag Manifolds
1.5.Parabolic Subalgebras of Real Semisimple Lie Algebras
1.6.Nonsemisimple Maximal Subalgebras
2.Three—dimensional Simple Subalgebras and Nilpotent Elements
2.1.sι2—triples
2.2.Three—dimensional Simple Subalgebras of Classical Simple Lie Algebras
2.3.Principal and Semiprincipal Three—dimensional Simple Subalgebras
2.4.Minimal Ambient Regular Subalgebras
2.5.Minimal Ambient Complete Regular Subalgebras
3.Semisimple Subalgebras and Subgroups
3.1.Semisimple Subgroups of Complex Classical Groups
3.2.Maximal Connected Subgroups of Complex Classical Groups
3.3.Semisimple Subalgebras of Exceptional Complex Lie Algebras
3.4.Semisimple Subalgebras of Real Semisimple Lie Algebras
Chapter 7.On the Classification of Arbitrary Lie Groups and Lie Algebras of a Given Dimension
1.Classification of Lie Groups and Lie Algebras of Small Dimension
1.1.Lie Algebras of Small1 Dimension
1.2.Connected Lie Groups of Dimension < 3
2.The Space of Lie Algebras.Deformations and Contractions
2.1.The Space of Lie Algebras
2.2.Orbits of the Action of the Group Gιn(k) on ι(k)
2.3.Deformations of Lie Algebras
2.4.Rigid Lie Algebras
2.5.Contractions of Lie Algebras
2.6.Spaces ιn(k) for Small n
Tables
References
Author Index
Subject Index
前言/序言
要使我国的数学事业更好地发展起来,需要数学家淡泊名利并付出更艰苦地努力。另一方面,我们也要从客观上为数学家创造更有利的发展数学事业的外部环境,这主要是加强对数学事业的支持与投资力度,使数学家有较好的工作与生活条件,其中也包括改善与加强数学的出版工作。
科学出版社影印一批他们出版的好的新书,使我国广大数学家能以较低的价格购买,特别是在边远地区工作的数学家能普遍见到这些书,无疑是对推动我国数学的科研与教学十分有益的事。
这次科学出版社购买了版权,一次影印了23本施普林格出版社出版的数学书,就是一件好事,也是值得继续做下去的事情。大体上分一下,这23本书中,包括基础数学书5本,应用数学书6本与计算数学书12本,其中有些书也具有交叉性质。这些书都是很新的,2000年以后出版的占绝大部分,共计16本,其余的也是1990年以后出版的。这些书可以使读者较快地了解数学某方面的前沿,例如基础数学中的数论、代数与拓扑三本,都是由该领域大数学家编著的“数学百科全书”的分册。对从事这方面研究的数学家了解该领域的前沿与全貌很有帮助。按照学科的特点,基础数学类的书以“经典”为主,应用和计算数学类的书以“前沿”为主。这些书的作者多数是国际知名的大数学家,例如《拓扑学》一书的作者诺维科夫是俄罗斯科学院的院士,曾获“菲尔兹奖”和“沃尔夫数学奖”。这些大数学家的著作无疑将会对我国的科研人员起到非常好的指导作用。
当然,23本书只能涵盖数学的一部分,所以,这项工作还应该继续做下去。更进一步,有些读者面较广的好书还应该翻译成中文出版,使之有更大的读者群。
总之,我对科学出版社影印施普林格出版社的部分数学著作这一举措表示热烈的支持,并盼望这一工作取得更大的成绩。
国外数学名著系列(续一 影印版)63:李群与李代数III 李群和李代数的结构 简介 (请注意:根据您的要求,以下简介将严格聚焦于李群与李代数理论的核心概念,避免提及《国外数学名著系列(续一 影印版)63:李群与李代数III 李群和李代数的结构》一书的具体内容,而是描述该主题领域本身,以满足“不包含此书内容”的要求,并力求专业、详尽,不带AI痕迹。) --- 李群与李代数理论是现代数学中一个极其重要且深远的分支,它架起了几何、分析、拓扑以及代数结构之间的桥梁。这一理论的核心在于研究那些既具有光滑流形结构,又具有群运算结构的对象——李群,以及它们在单位元附近逼近的线性化结构——李代数。理解李群和李代数的结构,是探索对称性、微分几何以及现代物理学(如粒子物理和广义相对论)的基石。 本领域的探讨始于对连续对称群的深刻洞察。李群(Lie Groups)是光滑的、可微分的流形,同时其乘法和求逆运算也是光滑映射。这种内在的几何和平滑性,使得我们可以用微积分和微分几何的工具来研究它们。例如,刚体运动群(欧几里得群)、线性群(一般线性群GL(n))、特殊正交群SO(n)以及酉群U(n)等,都是李群的典型实例。它们描述了空间、向量和复向量空间中的基本对称变换。 李代数的线性化视角 然而,直接研究李群的全局拓扑和代数结构往往极为复杂,尤其对于高维或非紧致的群而言。李代数(Lie Algebras)的引入提供了一种强大的局部分析方法。李代数 $mathfrak{g}$ 可以被视为李群 $G$ 在单位元处切空间上的向量空间,其上的二元运算——李括号 $[cdot, cdot]$——是对群乘法在单位元附近进行线性化的结果。 李括号是双线性、反对称的,并满足雅可比恒等式。这一结构将群的乘法非线性交互转化为代数结构上的二线性运算。更关键的是,存在一个称为指数映射(Exponential Map)的工具,它将李代数中的元素(向量场)映射回对应的李群元素(群元素)。指数映射揭示了李代数如何“生成”其所属的李群的局部结构。 结构理论的核心要素 李群和李代数的结构研究主要围绕以下几个关键方面展开: 1. 表示论(Representation Theory): 表示论关注的是李群或李代数如何在线性空间中实现为矩阵的变换。这是连接抽象代数结构与具体线性代数实例的桥梁。对于一个给定的李群 $G$,其李代数 $mathfrak{g}$ 的表示理论,特别是其不可约表示(Irreducible Representations),对理解 $G$ 本身的性质至关重要。在物理学中,表示论直接对应于基本粒子和场的量子态的分类。 2. 根系(Root Systems): 对于半单(Semisimple)李代数,理论的复杂性大大降低,可以被完全分类。这个分类的核心工具是根系。通过将李代数分解为卡尔丹子代数(Cartan Subalgebra)和根子空间,我们可以定义一个与李代数结构紧密相关的几何对象——根系。根系是一组向量,它们编码了李代数中所有非平凡李括号的结构信息,并直接导向了对所有有限维复半单李代数的完全分类(即著名的ADE系列和例外系列)。 3. 结构方程与 Killing 型: 李代数的内在结构通过结构常数来描述,这些常数定义了李括号运算。而 Killing 型(一个与李括号相关的二次型)则提供了一个判断李代数半单性或可解性的代数判据。半单李代数可以分解为简单李代数的直和,这是结构理论中一个基础性的分解定理。 4. 伴随表示(Adjoint Representation): 伴随表示是将李代数 $mathfrak{g}$ 作用于自身上的一种特殊表示,其作用方式是通过李括号运算。它是一个研究李代数内部对称性的强有力工具,并将李代数的结构与群的内在对称性直接联系起来。 深入研究的领域 对李群和李代数结构的深入探讨还会触及更高级的概念: 李群的微分同胚性质: 研究李群的拓扑性质,例如连通性、紧致性和纤维丛结构。 李群的结构分解: 对于一般的李群,我们有Levi分解(将可解部分与半单部分分离),以及对于紧致群,其最大环面与根系的关系。 复化(Complexification): 将实李代数提升到复数域上,往往能更清晰地揭示其代数结构,因为复半单李代数具有完美的分类结构。 总之,李群与李代数的结构理论是一个内容极其丰富且逻辑严谨的数学领域。它不仅提供了研究连续对称性的基本代数框架,而且通过指数映射、根系和表示论等工具,将抽象的几何概念转化为可计算的代数问题,是现代几何分析和理论物理不可或缺的基石。对这些结构的掌握,标志着对现代数学核心概念理解的深入。