內容簡介
The book contains a comprehensive account of the structure and classification of Lie groups and finite-dimensional Lie algebras(including semisimple, solvable, and of general type). In particular,a modem approach to the description of automorphisms and gradings of semisimple Lie algebras is given. A special chapter is devoted to models ofthe exceptional Lie algebras. The book contains many tables and will serve as a reference. At the same time many results are accompanied by short proofs.Onishchik and Vinberg are internationally known specialists in their field; they are also well known for their monograph "Lie Groups and Algebraic Groups (Springer-Verlag 1990).The book will be immensely useful to graduate students in differential geometry, algebra and theoretical physics.
內頁插圖
目錄
Introduction
Chapter 1.General Theorems
1.Lie's and Engel's Theorems
1.1.Lie's Theorem
1.2.Generalizations of Lie's Theorem
1.3.Engel's Theorem and Corollaries to It
1.4.An Analogue of Engel's Theorem in Group Theory
2.The Caftan Criterion
2.1.Invariant Bilinear Forms
2.2.Criteria of Solvability and Semisimplicity
2.3.Factorization into Simple Factors
3.Complete Reducibility of Representations and Triviality of the Cohomology of Semisimple Lie Algebras
3.1.Cohomological Criterion of Complete Reducibility
3.2.The Casimir Operator
3.3.Theorems on the Triviality of Cohomology
3.4.Complete Reducibility of Representations
3.5.Reductive Lie Algebras
4.Levi Decomposition
4.1.Levi's Theorem
4.2.Existence of a Lie Group with a Given Tangent Algebra
4.3.Malcev's Theorem
4.4.Classification of Lie Algebras with a Given Radical
5.Linear Lie Groups
5.1.Basic Notions
5.2.Some Examples
5.3.Ado's Theorem
5.4.Criteria of Linearizability for Lie Groups.Linearizer
5.5.Sufficient Linearizability Conditions
5.6.Structure of Linear Lie Groups
6.Lie Groups and Algebraic Groups
6.1.Complex and Real Algebraic Groups
6.2.Algebraic Subgroups and Subalgebras
6.3.Semisimple and Reductive Algebraic Groups
6.4.Polar Decomposition
6.5.Chevalley Decomposition
7.Complexification and Real Forms
7.1.Complexification and Real Forms of Lie Algebras
7.2.Complexification and Real Forms of Lie Groups
7.3.Universal Complexification of a Lie Group
8.Splittings of Lie Groups and Lie Algebras
8.1.Malcev Splittable Lie Groups and Lie Algebras
8.2.Definition of Splittings of Lie Groups and Lie Algebras
8.3.Theorem on the Existence and Uniqueness of Splittings
9.Caftan Subalgebras and Subgroups.Weights and Roots
9.1.Representations of Nilpotent Lie Algebras
9.2.Weights and Roots with Respect to a Nilpotent Subalgebra
9.3.Caftan Subalgebras
9.4.Caftan Subalgebras and Root Decompositions of Semisimple Lie Algebras
9.5.Caftan Subgroups
Chapter 2.Solvable Lie Groups and Lie Algebras
1.Examples
2.Triangular Lie Groups and Lie Algebras
3.Topology of Solvable Lie Groups and Their Subgroups
3.1.Canonical Coordinates
3.2.Topology of Solvable Lie Groups
3.3.Aspherical Lie Groups
3.4.Topology of Subgroups of Solvable Lie Groups
4.Nilpotent Lie Groups and Lie Algebras
4.1.Definitions and Examples
4.2.Malcev Coordinates
4.3.Cohomology and Outer Automorphisms
5.Nilpotent Radicals in Lie Algebras and Lie Groups
5.1.Nilradical
5.2.Nilpotent Radical
5.3.Unipotent Radical
6.Some Classes of Solvable Lie Groups and Lie Algebras
6.1.Characteristically Nilpotent Lie Algebras
6.2.Filiform Lie Algebras
6.3.Nilpotent Lie Algebras of Class 2
6.4.Exponential Lie Groups and Lie Algebras
6.5.Lie Algebras and Lie Groups of Type (I)
7.Linearizability Criterion for Solvable Lie Groups
Chapter 3.Complex Semisimple Lie Groups and Lie Algebras
1.Root Systems
1.1.Abstract Root Systems
1.2.Root Systems of Reductive Groups
1.3.Root Decompositions and Root Systems for Classical Complex Lie Algebras
1.4.Weyl Chambers and Simple Roots
1.5.Borel Subgroups and Subalgebras
1.6.The Weyl Group
1.7.The Dynkin Diagram and the Cartan Matrix
1.8.Classification of Admissible Systems of Vectors and Root Systems
1.9.Root and Weight Lattices
1.10.Chevalley Basis
2.Classification of Complex Semisimple Lie Groups and Their Linear Representations
2.1.Uniqueness Theorems for Lie Algebras
2.2.Uniqueness Theorem for Linear Representations
2.3.Existence Theorems
2.4.Global Structure of Connected Semisimple Lie Groups
2.5.Classification of Connected Semisimple Lie Groups
2.6.Linear Representations of Connected Reductive Algebraic Groups
2.7.Dual Representations and Bilinear Invariants
2.8.The Kernel and the Image of a Locally Faithful Linear Representation
2.9.The Casimir Operator and Dynkin Index
2.10.Spinor Group and Spinor Representation
3.Automorphisms and Gradings
3.1.Description of the Group of Automorphisms
3.2.Quasitori of Automorphisms and Gradings
3.3.Homogeneous Semisimple and Nilpotent Elements
3.4.Fixed Points of Automorphisms
3.5.One—dimensional Tori of Automorphisms and Z—gradings
3.6.Canonical Form of an Inner Semisimple Automorphism
3.7.Inner Automorphisms of Finite Order and Zm—gradings of Inner Type
3.8.Quasitorus Associated with a Component of the Group of Automorphisms
3.9.Generalized Root Decomposition
3.10.Canonical Form of an Outer Semisimple Automorphism
3.11.Outer Automorphisms of Finite Order and Zm—gradings of Outer Type
3.12.Jordan Gradings of Classical Lie Algebras
3.13.Jordan Gradings of Exceptional Lie Algebras
Chapter 4.Real Semisimple Lie Groups and Lie Algebras
1.Classification of Real Semisimple Lie Algebras
1.1.Real Forms of Classical Lie Groups and Lie Algebras
1.2.Compact Real Form
1.3.Real Forms and Involutory Automorphisms
1.4.Involutory Automorphisms of Complex Simple Algebras
1.5.Classification of Real Simple Lie Algebras
2.Compact Lie Groups and Complex Reductive Groups
2.1.Some Properties of Linear Representations of Compact Lie Groups
2.2.Selfoadjointness of Reductive Algebraic Groups
2.3.Algebralcity of a Compact Lie Group
2.4.Some Properties of Extensions of Compact Lie Groups
2.5.Correspondence Between Real Compact and Complex Reductive Lie Groups
2.6.Maximal Tori in Compact Lie Groups
3.Cartan Decomposition
3.1.Cartan Decomposition of a Semisimple Lie Algebra
3.2.Caftan Decomposition of a Semisimple Lie Group
3.3.Conjugacy of Maximal Compact Subgroups of Semisimple Lie Groups
3.4.Topological Structure of Lie Groups
3.5.Classification of Connected Semisimple Lie Groups
3.6.Linearizer of a Semisimple Lie Group
4.Real Root Decomposition
4.1.Maximal R—Diagonalizable Subalgebras
4.2.Real Root Systems
4.3.Satake Diagrams
4.4.Split Real Semisimple Lie Algebras
4.5.Iwasawa Decomposition
4.6.Maximal Connected Triangular Subgroups
4.7.Cartan Subalgebras of a Real Semisimple Lie Algebra
5.Exponential Mapping for Semisimple Lie Groups
5.1.Image of the Exponential Mapping
5.2.Index of an Element of a Lie Group
5.3.Indices of Simple Lie Groups
Chapter 5.Models of Exceptional Lie Algebras
1.Models Associated with the Cayley Algebra
1.1, Cayley Algebra
1.2.The Algebra G2
1.3.Exceptional Jordan Algebra
1.4.The Algebra F4
1.5.The Algebra E6
1.6.The Algebra E7
1.7.Unified Construction of Exceptional Lie Algebras
2.Models Associated with Gradings
Chapter 6.Subgroups and Subalgebras of Semisimple Lie Groups and Lie Algebras
1.Regular Subalgebras and Subgroups
1.1.Regular Subalgebras of Complex Semisimple Lie Algebras
1.2.Description of Semisimple and Reductive Regular Subalgebras
1.3.Parabolic Subalgebras and Subgroups
1.4.Examples of Parabolic Subgroups and Flag Manifolds
1.5.Parabolic Subalgebras of Real Semisimple Lie Algebras
1.6.Nonsemisimple Maximal Subalgebras
2.Three—dimensional Simple Subalgebras and Nilpotent Elements
2.1.sι2—triples
2.2.Three—dimensional Simple Subalgebras of Classical Simple Lie Algebras
2.3.Principal and Semiprincipal Three—dimensional Simple Subalgebras
2.4.Minimal Ambient Regular Subalgebras
2.5.Minimal Ambient Complete Regular Subalgebras
3.Semisimple Subalgebras and Subgroups
3.1.Semisimple Subgroups of Complex Classical Groups
3.2.Maximal Connected Subgroups of Complex Classical Groups
3.3.Semisimple Subalgebras of Exceptional Complex Lie Algebras
3.4.Semisimple Subalgebras of Real Semisimple Lie Algebras
Chapter 7.On the Classification of Arbitrary Lie Groups and Lie Algebras of a Given Dimension
1.Classification of Lie Groups and Lie Algebras of Small Dimension
1.1.Lie Algebras of Small1 Dimension
1.2.Connected Lie Groups of Dimension < 3
2.The Space of Lie Algebras.Deformations and Contractions
2.1.The Space of Lie Algebras
2.2.Orbits of the Action of the Group Gιn(k) on ι(k)
2.3.Deformations of Lie Algebras
2.4.Rigid Lie Algebras
2.5.Contractions of Lie Algebras
2.6.Spaces ιn(k) for Small n
Tables
References
Author Index
Subject Index
前言/序言
要使我國的數學事業更好地發展起來,需要數學傢淡泊名利並付齣更艱苦地努力。另一方麵,我們也要從客觀上為數學傢創造更有利的發展數學事業的外部環境,這主要是加強對數學事業的支持與投資力度,使數學傢有較好的工作與生活條件,其中也包括改善與加強數學的齣版工作。
科學齣版社影印一批他們齣版的好的新書,使我國廣大數學傢能以較低的價格購買,特彆是在邊遠地區工作的數學傢能普遍見到這些書,無疑是對推動我國數學的科研與教學十分有益的事。
這次科學齣版社購買瞭版權,一次影印瞭23本施普林格齣版社齣版的數學書,就是一件好事,也是值得繼續做下去的事情。大體上分一下,這23本書中,包括基礎數學書5本,應用數學書6本與計算數學書12本,其中有些書也具有交叉性質。這些書都是很新的,2000年以後齣版的占絕大部分,共計16本,其餘的也是1990年以後齣版的。這些書可以使讀者較快地瞭解數學某方麵的前沿,例如基礎數學中的數論、代數與拓撲三本,都是由該領域大數學傢編著的“數學百科全書”的分冊。對從事這方麵研究的數學傢瞭解該領域的前沿與全貌很有幫助。按照學科的特點,基礎數學類的書以“經典”為主,應用和計算數學類的書以“前沿”為主。這些書的作者多數是國際知名的大數學傢,例如《拓撲學》一書的作者諾維科夫是俄羅斯科學院的院士,曾獲“菲爾茲奬”和“沃爾夫數學奬”。這些大數學傢的著作無疑將會對我國的科研人員起到非常好的指導作用。
當然,23本書隻能涵蓋數學的一部分,所以,這項工作還應該繼續做下去。更進一步,有些讀者麵較廣的好書還應該翻譯成中文齣版,使之有更大的讀者群。
總之,我對科學齣版社影印施普林格齣版社的部分數學著作這一舉措錶示熱烈的支持,並盼望這一工作取得更大的成績。
國外數學名著係列(續一 影印版)63:李群與李代數III 李群和李代數的結構 簡介 (請注意:根據您的要求,以下簡介將嚴格聚焦於李群與李代數理論的核心概念,避免提及《國外數學名著係列(續一 影印版)63:李群與李代數III 李群和李代數的結構》一書的具體內容,而是描述該主題領域本身,以滿足“不包含此書內容”的要求,並力求專業、詳盡,不帶AI痕跡。) --- 李群與李代數理論是現代數學中一個極其重要且深遠的分支,它架起瞭幾何、分析、拓撲以及代數結構之間的橋梁。這一理論的核心在於研究那些既具有光滑流形結構,又具有群運算結構的對象——李群,以及它們在單位元附近逼近的綫性化結構——李代數。理解李群和李代數的結構,是探索對稱性、微分幾何以及現代物理學(如粒子物理和廣義相對論)的基石。 本領域的探討始於對連續對稱群的深刻洞察。李群(Lie Groups)是光滑的、可微分的流形,同時其乘法和求逆運算也是光滑映射。這種內在的幾何和平滑性,使得我們可以用微積分和微分幾何的工具來研究它們。例如,剛體運動群(歐幾裏得群)、綫性群(一般綫性群GL(n))、特殊正交群SO(n)以及酉群U(n)等,都是李群的典型實例。它們描述瞭空間、嚮量和復嚮量空間中的基本對稱變換。 李代數的綫性化視角 然而,直接研究李群的全局拓撲和代數結構往往極為復雜,尤其對於高維或非緊緻的群而言。李代數(Lie Algebras)的引入提供瞭一種強大的局部分析方法。李代數 $mathfrak{g}$ 可以被視為李群 $G$ 在單位元處切空間上的嚮量空間,其上的二元運算——李括號 $[cdot, cdot]$——是對群乘法在單位元附近進行綫性化的結果。 李括號是雙綫性、反對稱的,並滿足雅可比恒等式。這一結構將群的乘法非綫性交互轉化為代數結構上的二綫性運算。更關鍵的是,存在一個稱為指數映射(Exponential Map)的工具,它將李代數中的元素(嚮量場)映射迴對應的李群元素(群元素)。指數映射揭示瞭李代數如何“生成”其所屬的李群的局部結構。 結構理論的核心要素 李群和李代數的結構研究主要圍繞以下幾個關鍵方麵展開: 1. 錶示論(Representation Theory): 錶示論關注的是李群或李代數如何在綫性空間中實現為矩陣的變換。這是連接抽象代數結構與具體綫性代數實例的橋梁。對於一個給定的李群 $G$,其李代數 $mathfrak{g}$ 的錶示理論,特彆是其不可約錶示(Irreducible Representations),對理解 $G$ 本身的性質至關重要。在物理學中,錶示論直接對應於基本粒子和場的量子態的分類。 2. 根係(Root Systems): 對於半單(Semisimple)李代數,理論的復雜性大大降低,可以被完全分類。這個分類的核心工具是根係。通過將李代數分解為卡爾丹子代數(Cartan Subalgebra)和根子空間,我們可以定義一個與李代數結構緊密相關的幾何對象——根係。根係是一組嚮量,它們編碼瞭李代數中所有非平凡李括號的結構信息,並直接導嚮瞭對所有有限維復半單李代數的完全分類(即著名的ADE係列和例外係列)。 3. 結構方程與 Killing 型: 李代數的內在結構通過結構常數來描述,這些常數定義瞭李括號運算。而 Killing 型(一個與李括號相關的二次型)則提供瞭一個判斷李代數半單性或可解性的代數判據。半單李代數可以分解為簡單李代數的直和,這是結構理論中一個基礎性的分解定理。 4. 伴隨錶示(Adjoint Representation): 伴隨錶示是將李代數 $mathfrak{g}$ 作用於自身上的一種特殊錶示,其作用方式是通過李括號運算。它是一個研究李代數內部對稱性的強有力工具,並將李代數的結構與群的內在對稱性直接聯係起來。 深入研究的領域 對李群和李代數結構的深入探討還會觸及更高級的概念: 李群的微分同胚性質: 研究李群的拓撲性質,例如連通性、緊緻性和縴維叢結構。 李群的結構分解: 對於一般的李群,我們有Levi分解(將可解部分與半單部分分離),以及對於緊緻群,其最大環麵與根係的關係。 復化(Complexification): 將實李代數提升到復數域上,往往能更清晰地揭示其代數結構,因為復半單李代數具有完美的分類結構。 總之,李群與李代數的結構理論是一個內容極其豐富且邏輯嚴謹的數學領域。它不僅提供瞭研究連續對稱性的基本代數框架,而且通過指數映射、根係和錶示論等工具,將抽象的幾何概念轉化為可計算的代數問題,是現代幾何分析和理論物理不可或缺的基石。對這些結構的掌握,標誌著對現代數學核心概念理解的深入。