《图像处理、分析与机器视觉(基于LabVIEW)》主要介绍基于LabVIEW的图像处理、分析与机器视觉系统的开发技术。全书尽量避免只进行枯燥的理论讲解,而是从实际工程应用的角度将内容分为“机器视觉系统构建”、“图像操作与增强”和“特征识别与机器决策”三大部分。其中第一部分主要讨论成像系统模型原理、镜头相机部件的选型、系统的搭建和校准以及图像采集、显示和存储等技术;第二部分包括图像操作和变换、图像灰度分析以及图像增强等技术;第三部分介绍机器视觉软件开发的关键技术,不仅包括图像分割、形态学处理、特征提取、特征分析、特征在机器视觉系统开发中的应用,以及目标测量、图像模式匹配、目标分类识别等技术,还包括色彩空间和色彩匹配、色彩定位、彩色模式匹配以及色彩分类识别等彩色图像处理技术。
《图像处理、分析与机器视觉(基于LabVIEW)》配有各种具有代表性的图像实例,以及图像处理、分析和机器视觉应用的程序源代码。这些图像和源代码不仅可加强读者对内容的理解,还能作为实际工程项目的参考。
《图像处理、分析与机器视觉(基于LabVIEW)》可作为图像处理、分析和机器视觉项目开发人员的技术参考书,或高等学校计算机、虚拟仪器、自动化、模式识别与图像处理等专业的教材,也可作为对机器视觉开发团队或公司的培训或辅导教材。
杨高科,现就职于加拿大THALES公司,曾先后在SIEMENS、ALCATEL-LUCENT上海贝尔从事系统设计工作,并主持和管理过多个大型自动控制项目的部署实施。是国内较早使用LabVIEW进行虚拟仪器和机器视觉系统开发的工程人员之一,著有《LabVIEW虚拟仪器项目开发与管理》一书。
第1部分 机器视觉系统构建
第1章 绪论
1.1 机器视觉的定义与发展
1.2 机器视觉系统的构成与开发过程
1.3 NI视觉平台简介及软件安装
第2章 成像系统
2.1 成像系统模型
2.2 镜头
2.3 相机
2.3.1 CCD和CMOS
2.3.2 模拟相机和模拟视频信号
2.3.3 数字相机和数字视频信号
2.3.4 相机筛选
2.4 本章小结
第3章 图像采集、存储与显示
3.1 图像采集设备
3.2 NI-MAX与相机驱动
3.3 IMAQ、IMAQdx与图像采集
3.4 本章小结
第4章 图像管理与显示
4.1 内存中的图像
4.2 内存图像管理
4.3 图像显示
4.3.1 图像显示控件
4.3.2 图像浏览器
4.3.3 外部窗口显示
4.4 ROI与图像遮罩
4.5 无损图层
4.6 本章小结
第5章 图像存储
5.1 图像文件读写
5.2 BMP文件
5.3 TIFF文件
5.4 JPEG文件
5.5 PNG文件
5.6 AVI文件
5.7 本章小结
第6章 系统校准与图像矫正
6.1 畸变模型
6.2 图像校准
6.3 坐标校准
6.4 误差与校准质量
6.5 图像几何矫正
6.6 本章小结
第2部分 图像操作与增强
第7章 图像操作与运算
7.1 像素操作
7.2 图像操作与几何变换
7.3 图像运算
7.4 彩色图像操作与运算
7.5 本章小结
第8章 灰度分析与变换
8.1 直方图
8.2 灰度分析
8.3 结构相似性
8.4 灰度变换
8.5 本章小结
第9章 空间域图像增强
9.1 线性卷积
9.2 邻域增强
9.2.1 线性滤波
9.2.2 非线性滤波
9.3 本章小结
第10章 频域图像增强
10.1 图像的傅里叶变换
10.2 图像的频域滤波
10.3 NI-Vision频域图像滤波方法
10.4 本章小结
第3部分 特征分析与机器决策
第11章 阈值分割与边缘分割
11.1 阈值分割
11.1.1 全局分割
11.1.2 局部分割
11.2 边缘分割
11.2.1 点检测
11.2.2 线检测
11.2.3 轮廓提取
11.3 本章小结
第12章 形态学与区域分割
12.1 像素的形态学处理
12.2 颗粒的形态学处理
12.3 区域分割
12.4 区域生长与形态学重构
12.5 本章小结
第13章 颗粒特征与分析
13.1 点与线
13.2 边界与面积
13.3 角度和矩
13.4 测量坐标系
13.5 本章小结
第14章 图像特征及应用
14.1 灰度测量
14.2 边缘检测
14.3 轮廓分析与比较
14.4 纹理分析
14.4.1 小波变换
14.4.2 纹理的统计分析
14.5 角点检测
14.6 本章小结
第15章 图像模式匹配
15.1 灰度匹配
15.2 几何匹配
15.3 黄金模板比较
15.4 本章小结
第16章 目标测量
16.1 目标搜索
16.2 特征定位
16.3 几何测量
16.3.1 卡钳
16.3.2 卡尺
16.3.3 解析几何法
16.4 结果判定
16.5 本章小结
第17章 分类识别
17.1 训练过程与分类器
17.1.1 样本集合
17.1.2 分类器配置
17.1.3 分类器操作和训练
17.1.4 分类器输出和评价
17.2 分类检测与识别
17.3 OCR
17.3.1 字符集训练
17.3.2 文字识别与验证
17.4 本章小结
第18章 彩色视觉
18.1 色彩空间
18.2 色谱与色彩匹配
18.3 色彩定位
18.4 彩色模式匹配
18.5 色彩分类
18.6 彩色图像分割
18.7 本章小结
第19章 仪表与条码
19.1 仪表读取
19.2 条码读取
19.2.1 一维码
19.2.2 二维码
19.3 本章小结
第20章 双目立体视觉
20.1 双目视觉系统原理
20.2 系统校准
20.3 图像调整
20.4 对应点匹配和3D重建
20.5 本章小结
参考文献
在电子学和计算机科学中,图像处理、分析与机器视觉一直是一个十分活跃的分支。随着过去30年电子和计算机技术的迅猛发展,人们对这一分支的研究已经不再局限于图像处理分析理论和实验室验证,而是不断向机器视觉领域延伸。
机器视觉主要研究各种图像处理分析技术在实际工业环境中的应用。目前,国内外这方面的研究日趋深入,相关的书籍也层出不穷。但是,大多数书籍更倾向于对理论和算法进行抽象讲解。对于大部分工程人员来说,要将这些理论转化为具体的工程实践,仍有不少的困难需要克服。此外,由于很多客观条件的制约,工程人员无法深入地研究图像处理与分析的各种理论和算法。因此,对他们而言,一套封装了各种算法且能快速解决各种问题的平台工具更具意义。至于理论研究和算法等工作,应留给平台工具开发人员去完成。
虚拟仪器利用计算机把高性能模块化硬件和可灵活定制的软件相结合,完成各种测试、测量和自动化任务。National Instruments(NI)公司的LabVIEW是一个可视化、跨平台、使用图形化编程语言的虚拟仪器开发平台。它广泛支持各种硬件,且包含丰富的面向应用的封装函数库。这些可扩展的函数库覆盖面很广,包括数据采集、信号处理、数学计算、统计分析、数据通信、数据库、移动开发、嵌入式开发、FPGA和运动控制等。对于图像处理、分析和机器视觉系统开发,NI公司提供了与LabVIEW无缝集成的函数库NI Vision。工程人员在LabVIEW中使用它,可快速构建大型机器视觉自动化系统。
本书基于LabVIEW和NI Vision,介绍图像处理、分析与机器视觉的工程应用和系统开发技术。全书根据读者对图像处理、分析与机器视觉知识掌握的程度和实际需求的不同,分为机器视觉系统构建、图像操作与增强和特征识别与机器决策三大部分。
第1部分包括第1~6章,主要讨论机器视觉系统的成像系统模型原理、镜头相机部件的选型、系统的搭建和校准以及图像采集、显示和存储等技术。通过学习这些内容,读者将能按照分辨率工程应用的需求,完成机器视觉系统搭建,并能用其采集用于后续处理的图像,并对图像进行显示和存储。
第2部分包括第7~10章,主要讨论图像的操作、图像变换、图像灰度分析以及图像的空间域和频域增强技术。由于这些技术的理论知识几乎在所有图像处理类的大学教程或工程参考书籍中都有介绍,因此本书第2部分内容重点介绍这些技术在工程实践中的作用和使用方法。当然,这部分内容中对理论知识作了汇总性介绍,这不仅完全可以满足初学图像处理和分析技术的工程人员或在校大学生的需要,还能帮助他们在各种繁杂的信息中理清脉络。
第3部分包括第11~19章,介绍机器视觉软件开发的关键技术,包括图像分割、形态学处理、特征提取、特征分析、特征在机器视觉系统开发中的应用以及目标测量、图像模式匹配、目标分类识别等技术。这部分将重点放在已经完成系统搭建和图像增强后的机器视觉软件开发上。在进行机器视觉软件开发时,不仅要考虑软件工作的理论基础,还要考虑其在实际工作环境中保持鲁棒性和实时性的前提下,仍能对各种变化因素具有不变性。例如,即使出现光照变化、被测件的位置变化、尺寸变化或被测件旋转等情况,机器视觉软件也仍能正常工作。此外,这部分内容还介绍了色彩空间和色彩匹配、色彩定位、彩色模式匹配以及色彩分类识别等技术,将机器视觉扩展到彩色图像范围。最后,还介绍了机器视觉仪表和条码读取技术。这部分内容适合进行机器视觉系统开发的工程人员或在校的研究生或博士生。
全书尽可能覆盖基于LabVIEW和NI Vision的图像处理、分析与机器视觉系统开发的最新技术。为帮助读者深入理解书中的内容,本书还精心收集了各种具有典型性的图像,并基于LabVIEW和NI Vision的最新版本创建了各种实例程序。这些实例图像和程序的代码可以从清华大学出版社官方网站(http://www.tup.com .cn)下载。
本书的编写是一个艰难和长期坚持的过程。2012年我的《LabVIEW虚拟仪器项目开发与管理》一书出版后,我想继续将基于LabVIEW开发图像处理、分析和机器视觉系统的一些经验和心得汇总成书。恰巧那时清华大学出版社和NI公司也计划联合出版一套LabVIEW技术丛书。在得到邀约后,我就与清华大学出版社一起制订了本书的编写计划。在第1部分的编写过程中,因工作原因,我不得不和妻儿迁居国外,后续章节的编写也是在新环境和工作之余完成的。感谢妻子和儿子在此过程中给予我的极大支持和理解。此外,许多同行和LAVA、NI Discussion Forums、VI Home、GSD Zone等论坛上的朋友对本书内容的规划提出了不少宝贵意见,他们的鞭策和关注给了我不断坚持的信念,在此向他们表示衷心的感谢!
本书中的实例程序和图像可通过扫描封底的二维码在益阅读网站上下载。
在下载的实例程序和图像目录中,同一章中的实例程序存在同一目录中,并按照“CH�舱潞拧钡男问矫�名。例如,第15章的所有实例代码存放在CH��15目录中(如下图)。
实例程序使用的图像和书中的插图则统一存放在IMGs目录中。为了程序运行方便,实例图像并未按章划分目录存放,而是在各实例程序代码和书中代码插图中明确说明了图像的路径。例如,第16章插图中的代码使用了保存在IMGs目录下Bracket子目录中的Bracket3.png图像。
由于时间和篇幅的限制,本书内容很难覆盖基于LabVIEW的图像处理、分析和机器视觉技术的各个方面,也难免存在不妥之处,请读者原谅并提出宝贵意见。
衷心希望机器视觉和虚拟仪器技术能在LabVIEW助力下有长足发展!
笔者
2018年3月于多伦多
这本书的文字风格非常独特,它没有那种传统技术书籍的刻板与僵硬,反而带有一种老教授在茶余饭后分享经验的亲切感。我尤其欣赏作者在讲解机器视觉部分时所展现出的那种深刻洞察力。他不仅仅是在介绍OpenCV库中某个函数的用法,而是花了大量篇幅去探讨不同照明条件、不同材质物体对特征提取的干扰,以及如何通过算法设计来规避这些潜在的陷阱。这种“经验之谈”对于项目开发至关重要,因为真实世界的机器视觉系统远比实验室里的标准图像要“脏乱差”得多。书中对鲁棒性(Robustness)的强调令人印象深刻,作者反复提醒读者,一个好的视觉系统不仅要能“看懂”理想图像,更重要的是在噪声、光照变化和遮挡等复杂情况下依然能保持稳定输出。这种以结果为导向的讨论方式,极大地提升了阅读的实用价值,让我感觉自己正在跟随一位经验丰富的工程师在现场进行项目攻坚。
评分从排版和插图质量来看,这本书的制作水准是相当高的。很多技术书籍在图表印刷上往往粗糙潦草,导致读者难以准确理解数据分布或算法流程。然而,这本《图像处理、分析与机器视觉》在这一点上做得非常出色。书中所有的流程图、矩阵运算的示意图,以及LabVIEW VI(虚拟仪器)的截图都采用了高分辨率的彩色印刷,色彩的准确度和细节的清晰度都无可挑剔。这对于视觉领域的学习者来说是巨大的福音,因为图像本身就是最重要的信息载体。特别是在讲解特征匹配算法时,书中对关键点和描述子的可视化展示,直观地揭示了算法如何在像素空间中锁定目标。这种对细节的极致追求,体现了出版方和作者对知识传递质量的认真负责。它让学习不再是枯燥的文字阅读,而是一次视觉上的享受和认知上的清晰构建。
评分这本书的深度把握得相当精准,它成功地在“入门”与“前沿”之间找到了一个完美的平衡点。对于刚刚接触LabVIEW和图像处理的新手来说,前几章的内容会非常友好,它会耐心地引导你熟悉LabVIEW的数据流概念和基本图像数据结构。但是,当你以为它只是一本基础教程时,后面关于深度学习在图像识别中应用的章节又会立刻将你带入当前的工业热点。作者并没有将深度学习仅仅作为一个时髦的标签来提及,而是深入探讨了如何将预训练的模型部署到LabVIEW环境中进行实时推理,以及如何处理嵌入式平台的资源限制。这种从底层算法逻辑到上层应用部署的全景式覆盖,使得这本书的生命周期很长——它既能帮助新手打下坚实的基础,也能让有经验的工程师从中找到可以借鉴的工程化思路,拓宽他们对新技术的应用视野。
评分我在阅读过程中,体会到这本书的结构设计有一种内在的逻辑驱动力,它不是简单地将知识点堆砌起来,而是遵循了一个从“感知”到“决策”的完整机器视觉系统构建路径。首先是图像采集与预处理(降噪、滤波),然后是信息的提取(边缘、纹理、形状),接着是场景理解(目标定位、测量),最后才是对这些信息的综合分析和判断。这种层层递进的结构,使得读者在学习每一章时,都能清楚地知道这一步知识在整个视觉任务链条中的位置和作用。当我合上书本时,我脑海中浮现的不是零散的函数调用列表,而是一个完整的、可执行的视觉系统架构图。这种系统性的知识构建,对于任何希望从事自动化检测、质量控制或机器人引导等领域的专业人士来说,都是无价的财富。它教会的不仅仅是“怎么做”,更是“为什么这么做”以及“如何把所有步骤整合起来”。
评分这本书的封面设计得非常抓人眼球,那是一种深邃的蓝色调,配上流动的光线效果,让人立刻联想到数字图像的奥秘。我原本以为这会是一本晦涩难懂的理论教科书,但翻开目录后才发现,它其实更像是一本引人入胜的实践指南。作者似乎非常擅长将复杂的算法原理与实际操作无缝对接,书中对于那些晦涩难懂的傅里叶变换、小波分析等概念,都不是干巴巴地罗列公式,而是通过大量的实例和图示来剖析其背后的物理意义和工程应用价值。特别是关于图像增强和分割的那几章,内容组织得极其清晰,从基础的直方图均衡化讲起,逐步深入到更高级的阈值分割和边缘检测技术。阅读过程中,我能真切感受到作者在努力搭建一座桥梁,让那些原本停留在纸面上的数学模型,能够真正通过LabVIEW的图形化编程环境“活”起来。这种贴近实战的叙事风格,让即便是初学者也能在跟随书中的步骤时,逐步建立起对整个图像处理流程的宏观认知。对于我这种希望快速将理论知识转化为工程能力的人来说,这本书无疑提供了极佳的起点。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.teaonline.club All Rights Reserved. 图书大百科 版权所有