内容介绍
本书基于Python全面介绍了机器学习在信贷风控领域的应用与实践,从原理、算法与工程实践3个维度全面展开,包含21种实用算法和26个解决方案。
作者是智能风控、人工智能和算法领域的资深专家,曾在多加知名金融科技企业从事风控算法方面的研究与实践,经验丰富,本书得到了风控领域9位专家的高度评价。
全书一共8章,每个章节都由问题、算法、案例三部分组成,具有系统性和实战性。
第1-2章讲解了信贷业务的基础知识以及常用的规则引擎、信用评估引擎的建模方法。
第3章以项目冷启动为背景,讲解了风控领域应用广泛的迁移学习方法。
第4-5章介绍了幸存者偏差与不均衡学习中所使用的无监督学习与半监督学习方法。
第6章阐述了无监督的异常识别算法,该算法常用于数据清洗与冷启动项目,是反欺诈引擎中常用的个体欺诈检测方法。
第7章分享了一些经作者实践证明效果较好的模型优化方法,并对模型融合的思路进行了较为详细的介绍。
第8章重点讲解了知识图谱相关的复杂网络基础知识及网络表示学习方法,其中的社区发现算法常用于团伙欺诈检测。此外,本章中的部分方法对信用评估模型的优化也有很大帮助。
和国内两个名词做题目的书一样,抄抄博客就是书。发现这行的人都神神叨叨,说不通了就是业务。学成了敢去p2p就业么。不过可以说是××系p100,有些话说多了自己就信了。#什么是敬畏#你行你上#网红经济
评分##资深从业者写的,有干货
评分##这是一本实操性非常强的书,作者实战经验丰富,书中对一些细节看似简单的修改,就能收到大不相同的效果,很受启发。
评分##数据集呢数据集呢数据集呢数据集呢 看着代码凭空想象可累死我了
评分##文中的算法讲解基本来自于各个博客和西瓜书,敢情现在抄抄抄就能出书了。另外,评论里的水军也刷得太明显了。
评分##对于互联网金融风控大致思路都讲到了。再深入就是敏感区域了
评分##整体来说,每个阶段划分的不是很清晰,前面大部分都涉及到贷前的模型,后面的知识图谱涉及到比较多贷后。从模型的角度来说,还是涉及到一部分常用的模型的,但其实对风控涉及的不是特别深,比较适合新手入门吧。
评分##对这本书关注了很久,终于第二时间拿到手,无论是内容还是配图设计,都超预期。梅老师非常热心,解答了我的好几个问题。希望借这本书在风控这条路上更进一步
评分##文中的算法讲解基本来自于各个博客和西瓜书,敢情现在抄抄抄就能出书了。另外,评论里的水军也刷得太明显了。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2026 book.teaonline.club All Rights Reserved. 图书大百科 版权所有