编辑推荐
• Active learning with highly accessible introductory text using computers and web site support rather than passive reading
• Well-prepared Excel (R) workbooks enable easy Monte Carlo simulation and other analyses
内容简介
This highly accessible and innovative text (and accompanying website: www.wabash.edu/econometrics) uses Excel (R) workbooks powered by Visual Basic macros to teach the core concepts of econometrics without advanced mathematics. It enables students to run monte Carlo simulations in which they repeatedly sample from artificial data sets in order to understand the data generating process and sampling distribution. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software.
作者简介
Humberto Barreto is DeVore Professor of Economics at Wabash College, Indiana. He received his Ph.D. from the University of North Carolina at Chapel Hill. Professor Barreto has lectured often on teaching economics with computer-based methods, including the National Science Foundation's Chautuqua program for short courses using simulation. He has received the Indiana Sears Roebuck Teaching Award and the Wabash College McLain-McTurnan Arnold Award for Teaching Excellence. The author of The Entrepreneur in Microeconomic Theory, Professor Barreto has served as a Fulbright Scholar in the Dominican Republic. He is the manager of electronic information for the History of Economics Society and the director of the opportunities to Learn about Business program at Wabash College.
Frank M. Howland is Associate Professor of Economics at Wabash College. He earned his PhD in Economics from Stanford University. Professor Howland was a visiting researcher at FEDEA on Madrid in 1995-96. His academic research focuses on college savings plans.
精彩书评
"Barreto and Howland have taken a truly innovative approach to teach undergraduate econometrics, using computer simulation methods to illustrate and clarify difficult topics. Fully integrated with Microsoft Excel, this textbook forces students to take a hands-on approach to the subject. There is no better way to learn econometrics than by doing econometrics!"
--Jason Abrevaya, Purdue University
"Barreto and Howland have done an excellent job of producing an introductory econometric textbook based on Excel software combined with a well written and applied intuitive approach to econometrics. In my opinion, their teaching philosophy is absolutely the correct method: Put the student in front of a computer and teach econometrics by doing econometrics"
--Daniel V. Gordon, University of Calgary
"The authors wrote a textbook on introductory econometrics which is different from most textbooks by using Monte Carlo simulation with Microsoft Excel. The book is written for undergraduate students in econometrics who should not be explicitly confronted with formal mathematics but instead with visual explanations of abstract ideas."
-- Zentralblatt MATH
"Hats off to Barreto and Howland for a clearly-written text that introduces the undergraduate to data analysis and econometric techniques using Excel. The book's strength is in using Monte Carlo simulation to illustrate sampling theory and the Gauss Markov theorem. I am in total agreement with the authors that computer-based exercises help to make abstract concepts operations and meaningful. Most juniors and seniors are familiar with the basic features of Excel spreadsheets. Showing them how to use SOLVER, the DATA ANALYSIS TOOLS, and to run Monte Carlo simulations, allows an instructor to take a familiar tool (Excel) and use it to introduce undergraduates to econometrics in an intuitive and non-threatening way."
-- Jon M. Conrad, Cornell University
目录
1. Introduction
Part I. Description:
2. Correlation
3. Pivot tables
4. Computing regression
5. Interpreting regression
6. Functional form
7. Multivariate regression
8. Dummy variables
Part II. Inference:
9. Monte Carlo simulation
10. Inferential statistics review
11. Measurement box model
12. Comparing two populations
13. The classical econometric model
14. The Gauss Markov theorem
15. Understanding the standard error
16. Hypothesis testing and confidence intervals
17. F tests
18. Omitted variable bias
19. Heteroskedasticity
20. Autocorrelation
21. The series topics
22. Dummy dependent variables
23. Bootstrap
24. Simultaneous equations.
计量经济学导论:蒙特卡洛模拟方法与应用 作者: [此处可填入原书作者信息,若无则省略] 出版社: [此处可填入出版社信息,若无则省略] 装帧: 精装 --- 内容提要 本书旨在为读者提供一个扎实而实用的计量经济学基础,重点聚焦于如何运用现代统计工具,特别是蒙特卡洛(Monte Carlo)模拟方法,来解决复杂的经济学问题和数据分析挑战。本书不仅涵盖了计量经济学的核心理论,更强调实际操作与应用,使读者能够将抽象的统计概念转化为可操作的分析模型。 本书的结构设计清晰,从基础的概率论和统计学回顾开始,逐步深入到回归分析的各个方面。不同于传统教材侧重于证明和理论推导,本书大量引入实际经济数据案例,并通过逐步构建和运行模拟实验,直观地展示了统计推断背后的逻辑。我们相信,通过亲手操作和观察模拟结果,学习者能更深刻地理解统计方法的有效性和局限性。 第一部分:基础回顾与计量经济学基石 第一章:计量经济学的视角与数据类型 本章首先界定计量经济学的核心任务——利用统计方法量化经济理论并检验假设。我们将详细区分截面数据(Cross-Sectional)、时间序列数据(Time Series)和面板数据(Panel Data)的特征及其在模型构建中的不同考量。重点讨论了测量误差、样本选择偏误等在经济数据中普遍存在的问题,并引入了描述性统计工具箱,为后续的推断做好准备。 第二章:线性回归模型(OLS)的理论基础 本章深入探讨了最基本的工具——普通最小二乘法(OLS)。我们详细阐述了高斯-马尔可夫(Gauss-Markov)定理的假设条件,并解释了在线性模型中,无偏性、一致性和有效性这三个核心性质的含义。不同于纯理论的论述,本章侧重于解释当这些假设被违反时(如异方差性或自相关),OLS估计量的性质如何变化,并初步引入了如何使用软件进行诊断性检验。 第三章:OLS估计量的统计推断 统计推断是计量经济学的灵魂。本章构建了在标准假设下检验参数估计量的理论框架,包括t检验、F检验的构建与解释。我们详细讲解了置信区间和显著性水平的概念,并指导读者如何准确地解读回归结果中的$p$值。此外,本章还涵盖了模型设定的重要性,如函数形式的选择(对数、平方项)对解释力的影响。 第二部分:计量模型的扩展与挑战 第四章:多重共线性与模型选择 在实际应用中,解释变量之间的高度相关性(多重共线性)是常见难题。本章深入分析了多重共线性的后果——估计量的方差膨胀,而非估计量本身的偏误。我们将探讨诊断多重共线性的方法,例如方差膨胀因子(VIF),并讨论在面临共线性问题时,模型简化或变量选择的策略。 第五章:异方差性(Heteroskedasticity)的处理 异方差性是指误差项的方差不恒定。本章系统阐述了异方差性对OLS估计量的影响——估计量仍然无偏且一致,但标准误的计算是错误的,导致统计推断失效。我们将重点介绍处理异方差性的方法,包括加权最小二乘法(WLS)和使用稳健标准误(Robust Standard Errors),并提供在不同情境下选择合适方法的指南。 第六章:时间序列数据的初步探讨 本部分将视角转向时间序列数据。我们将介绍时间序列数据的基本特征,如平稳性(Stationarity)的概念及其重要性。本章构建了自回归(AR)和移动平均(MA)模型的初步框架,并讲解了如何通过平稳性检验(如ADF检验)来识别时间序列的内在结构。 第三部分:蒙特卡洛模拟法的核心应用 第七章:蒙特卡洛模拟导论 本章是全书的重点之一,系统介绍蒙特卡洛(MC)模拟方法的原理。我们将从随机抽样、伪随机数生成器的特性讲起,解释如何通过重复模拟来逼近真实的概率分布和期望值。本章将详细展示如何利用电子表格软件(如Microsoft Excel)强大的矩阵运算和随机数生成功能,搭建初步的模拟环境,例如模拟抛硬币的次数分布。 第八章:利用蒙特卡洛模拟进行参数估计和检验 我们将把MC方法应用于计量经济学的核心问题。首先,演示如何利用MC模拟来验证在有限样本下,OLS估计量的渐近性质是否成立。随后,重点讲解如何通过模拟重采样(Bootstraping)技术,来计算在存在复杂异方差或非正态误差项时,参数估计量的更准确的标准误和置信区间。这使得读者可以超越依赖严格理论假设的局限。 第九章:处理复杂模型的稳健性分析 在更复杂的模型结构中,解析解往往难以求得。本章展示了MC模拟在处理这些“棘手”情况下的威力。例如,我们将模拟在非线性约束或存在高阶滞后变量的模型中,估计参数的分布情况。通过大量模拟,我们可以评估不同估计策略的稳健性,并对模型设定进行敏感性分析,了解关键参数对模型假设变化的反应程度。 第十章:政策评估与风险分析的模拟 本章将计量经济学与实际决策相结合。我们将构建一个简单的宏观经济模型,通过设定不同的政策冲击(如财政支出增加),并利用蒙特卡洛模拟来评估这些政策对关键经济指标(如通货膨胀、失业率)的长期影响分布。这为读者提供了一种量化政策不确定性和风险暴露的实用工具。 结语:迈向高级计量经济学 本书的目的是为读者打下坚实的理论基础,并武装以强大的数值模拟能力。掌握了蒙特卡洛方法,读者便能更自信地处理现实世界数据所固有的复杂性和不确定性。本书为后续学习因果推断、面板数据模型或更高级的时间序列分析,如向量自回归(VAR)模型,奠定了不可或缺的实践基础。 --- 本书特点: 理论与实践并重: 既有严格的统计学理论支撑,又紧密结合实际经济案例。 操作性强: 详细指导读者如何利用普及性软件(Microsoft Excel)实现复杂的模拟过程。 侧重现代方法: 重点介绍对当代经济分析至关重要的蒙特卡洛与重采样技术。 案例驱动学习: 所有关键概念都通过具体的经济数据实例进行演示和验证。