凸优化

凸优化 pdf epub mobi txt 电子书 下载 2025

Stephen Boyd
图书标签:
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
Preface
Introduction
1.1. Mathematical optimization
1.2 Least—squares and linear programming
1.3 Convex optimization
1.4 Nonlinear optimization
1.5 Outline
1.6 Notation
Bibliography
Theory
Convex sets
2.1 Affine and convex sets
2.2 Some important examples
2.3 Operations that preserve convexity
2.4 Generalized inequalities
2.5 Separating and supporting hyperplanes
2.6 Dual cones and generalized inequalities
Bibliography
Exercises
Convex functions
3.1 Basic properties and examples
3.2 Operations that preserve convexity
3.3 The conjugate function
3.4 Quasiconvex functions
3.5 Log—concave and log—convex functions
3.6 Convexity with respect to generalized inequalities
Bibliography
Exercises
Convex optimization problems
4.1 Optimization problems
4.2 Convex optimization
4.3 Linear optimization problems
4.4 Quadratic optimization problems
4.5 Geometric programming
4.6 Generalized inequality constraints
4.7 Vector optimization
Bibliography
Exercises
Duality
5.1 The Lagrange dual function
5.2 The Lagrange dual problem
5.3 Geometric interpretation
5.4 Saddle—point interpretation
5.5 Optimality conditions
5.0 Perturbation and sensitivity analysis
5.7 Examples
5.8 Theorems of alternatives
5,9 Generalized inequalities
Bibliography
Exercises
II Applications
6 Approximation and fitting
6.1 Norm approximation
0.2 Least—norm problems
6.3 Regularized approximation
6.4 Robust approximation
6.5 Function fitting and interpolation
Bibliography
Exercises
Statistical estimation
7.1 Parametric distribution estimation
7.2 Nonparametric distribution estimation
7.3 Optimal detector design and hypothesis testing
7.4 Chebyshev and Chernoff bounds
7.5 Experiment design
Bibliography
Exercises
8 Geometric problems
8.1 Projection on a set
8.2 Distance between sets
8.3 Euclidean distance and angle problems
8.4 Extremal volume ellipsoids
8.5 Centering
8.6 Classification
8.7 Placement and location
8.8 Floor planning
Bibliography
Exercises
III Algorithms
9 Unconstrained minimization
9.1 Unconstrained minimization problems
9.2 Descent methods
9.3 Gradient descent method
9.4 Steepest descent method
9.5 Newton's method
9.6 Self—concordance
9.7 Implementation
Bibliography
Exercises
10 Equality constrained minimization
10.1 Equality constrained minimization problems
10.2 Newton's method with equality constraints
10.3 Infeasible start Newton method
10.4 Implementation
Bibliography
Exercises
11 Interior—point methods
11.1 Inequality constrained minimization problems
11.2 Logarithmic barrier function and central path
11.3 The barrier method
11.4 Feasibility and phase I methods
11.5 Complexity analysis via self—concordance
11.6 Problems with generalized inequalities
11.7 Primal—dual interior—point methods
11.8 Implementation
Bibliography
Exercises
Appendices
A Mathematical background
A.1 Norms
A.2 Analysis
A.3 Functions
A.4 Derivatives
A.5 Linear algebra
Bibliography
B Problems involving two quadratic functions
B.1 Single constraint quadratic optimization
B.2 The S—procedure
B.3 The field of values of two symmetric matrices
B.4 Proofs of the strong duality results
Bibliography
C Numerical linear algebra background
C.1 Matrix structure and algorithm complexity
C.2 Solving linear equations with factored matrices
C.3 LU, Cholesky, and LDLT factorization
C.4 Block elimination and Schur complements
C.5 Solving underdetermined linear equations
Bibliography
References
Notation
Index
· · · · · · (收起)

具体描述

《凸优化(英文)》由世界图书出版社出版。

用户评价

评分

##B站拯救了我

评分

##配合CVX101,效果好到爆。10天入门凸分析。

评分

##凸优化

评分

##例子丰富,应用为主

评分

##例子丰富,应用为主

评分

##配合CVX101,效果好到爆。10天入门凸分析。

评分

##B站拯救了我

评分

##内容详实,凸优化领域入门书,不过读起来略微啰嗦,很多内容缺乏严格证明。

评分

##凸优化

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.teaonline.club All Rights Reserved. 图书大百科 版权所有