https://mml-book.github.io/
::This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics::
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
##特别适合像我这种已经n年没学过数学的人,也很适合做reference有什么不懂的时候即兴翻翻
评分##不管是拿来入门还是重温都很适合
评分##很好很清晰啊(90%)酒店隔离最大收获 不过草草过了一遍
评分##很不错,就是最复杂的算法到svm,第二部分再多一些算法就更好了
评分##过浅, 只适合速览
评分##特别适合像我这种已经n年没学过数学的人,也很适合做reference有什么不懂的时候即兴翻翻
评分##只读了第一部分的数学基础,快速地过了一遍,还挺不错的
评分##很好很清晰啊(90%)酒店隔离最大收获 不过草草过了一遍
评分##写的不错,难度适中
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.teaonline.club All Rights Reserved. 图书大百科 版权所有