Mathematics for Machine Learning

Mathematics for Machine Learning pdf epub mobi txt 电子书 下载 2026

Marc Peter Deisenroth
图书标签:
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!
Part I: Mathematical Foundations
Introduction and Motivation
Linear Algebra
Analytic Geometry
Matrix Decompositions
Vector Calculus
Probability and Distribution
Continuous Optimization
Part II: Central Machine Learning Problems
When Models Meet Data
Linear Regression
Dimensionality Reduction with Principal Component Analysis
Density Estimation with Gaussian Mixture Models
Classification with Support Vector Machines
· · · · · · (收起)

具体描述

https://mml-book.github.io/

::This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics::

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

用户评价

评分

##相较而言我更喜欢前半部分有关于数学基础的部分,深入浅出。

评分

##写的不错,难度适中

评分

##很不错,就是最复杂的算法到svm,第二部分再多一些算法就更好了

评分

##认真学习

评分

##写的不错,难度适中

评分

##市面上最好的机器学习入门教材(我菜我先说)

评分

##只读了第一部分的数学基础,快速地过了一遍,还挺不错的

评分

##剑桥出版的书文风总是规整一些,读起来排版很美。前面小错误不少,网站上给了校正。

评分

##写的不错,难度适中

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.teaonline.club All Rights Reserved. 图书大百科 版权所有