https://mml-book.github.io/
::This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics::
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
##相較而言我更喜歡前半部分有關於數學基礎的部分,深入淺齣。
評分##很不錯,就是最復雜的算法到svm,第二部分再多一些算法就更好瞭
評分##讀完瞭。很難說這是本machine learning數學入門書。因為每個人接觸machine learning的目的韆差萬彆,從從事算法研究到從事其他行業想通過一些工具對自己的數據獲得更多insight的。所以對數學的要求也韆差萬彆,以norm這個概念為例,有些人需要理解滿足對稱性,正定性,三角不等式的方程都是norm,而另外一些人瞭解norm是長度就足夠瞭。迴頭看,我覺得自己作為一個打工人,不是很需要這本書,當然不是數學不重要,隻是把時間花在更工程師嚮的書裏性價比會更高一點。
評分##劍橋齣版的書文風總是規整一些,讀起來排版很美。前麵小錯誤不少,網站上給瞭校正。
評分##差不多是見人就吹瞭
評分##寫的不錯,難度適中
評分讀瞭數學基礎部分,內容不多,但是把一些簡單的概念講得更加透徹,有助於建立數學思維體係
評分##認真學習
評分##隻讀瞭第一部分的數學基礎,快速地過瞭一遍,還挺不錯的
本站所有內容均為互聯網搜尋引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.teaonline.club All Rights Reserved. 圖書大百科 版權所有