内容简介
《数据挖掘与应用》全面地介绍了数据挖掘的相关主题.包括数据理解与数据准备、关联规则挖掘、多元统计中的降维方法、聚类分析、神经网络、决策树方法、模型评估等内容。全书体系完整,文字精炼,注重对数据挖掘方法的直觉理解及其应用:同时,保持了一定的严谨性,为学生理解和运用这些方法提供了坚实的基础。
《数据挖掘与应用》实例丰富,并附有相应SAS程序,以便于学生尽快理解相关内容并用以解决实际问题。
《数据挖掘与应用》配有教辅,可以免费提供给任课教师使用。如需要,欢迎填写书后的“教师反馈及课件申请表’索取。
作者简介
张俊妮,美国哈佛大学统计学博士,现为北京大学光华管理学院商务统计及经济计量系副教授。研究领域包括因果推断、贝叶斯分析、蒙特卡洛方法、数据挖掘。在Journal of American Statistical Association、Statistica Sinica、Journal ofEducational and BehavioralStatistics、 《经济学(季刊)》、 《数理统计与管理》、 《管理世界》等期刊上发表论文十余篇。
内页插图
目录
第一章 数据挖掘概述
1.1 什么是数据挖掘
1.2 数据挖掘的应用
1.3 数据挖掘方法论
第二章 数据理解和数据准备
2.1 数据理解
2.2 数据准备
2.3 使用SAS进行数据理解和数据准备:FNBA信用卡数据
第三章 关联规则挖掘
3.1 关联规则的实际意义
3.2 关联规则的基本概念及Apriori算法
3.3 负关联规则
3.4 序列关联规则
3.5 使用SAS进行关联规则挖掘
第四章 多元统计中的降维方法
4.1 主成分分析
4.2 探索性因子分析
4.3 多维标度分析
第五章 聚类分析
5.1 距离与相似度的度量
5.2 k均值聚类法
5.3 层次聚类法
第六章 预测性建模的一些基本方法
6.1 判别分析
6.2 朴素贝叶斯分类算法
6.3 k近邻法
6.4 线性模型与广义线性模型
第七章 神经网络
7.1 神经网络架构及基本组成
7.2 误差函数
7.3 神经网络训练算法
7.4 提高神经网络模型的可推广性
7.5 数据预处理
7.6 使用SAS建立神经网络模型
7.7 自组织图
第八章 决策树
8.1 决策树简介
8.2 决策树的生长与修剪
8.3 对缺失数据的处理
8.4 变量选择
8.5 决策树的优缺点
第九章 模型评估
9.1 因变量为二分变量的情形
9.2 因变量为多分变量的情形
9.3 因变量为连续变量的情形
9.4 使用SAS评估模型
第十章 模型组合与两阶段模型
10.1 模型组合
10.2 随机森林
10.3 两阶段模型
参考文献
精彩书摘
对于定序自变量,最常用的一种转换是按各类别的序号直接将该变量转换为数值自变量。对于名义自变量,最常用的转换是将该变量转换为哑变量。例如,对于性别而言,可以生成一个二元哑变量,取值1表示“女”,0表示“男”。对于有多个取值的名义自变量,可以生成一系列二元哑变量。例如,中国内地有31个省、自治区和直辖市,可以据此生成30个哑变量。但是,如果一个名义自变量取值过多,生成过多的哑变量容易造成过度拟合。一个简单而有效的方法是只针对包含观测比较多的类别生成哑变量,而将剩余的类别都归于“其他”这个大类别。还有一种方法是利用领域知识,将各类别归为几个大类之后再生成哑变量,例如,将中国内地31个省、自治区和直辖市归为华北、华中、华东、华南、西北、东北、西南等地区,再生成地区的哑变量。五、处理时间变量时间变量无法直接进入建模数据集,因为时间是无限增长的,在历史数据中出现的时间肯定不同于将来模型所需应用的数据集中出现的时间,所以直接使用历史数据的时间建立的模型就无法应用于将来的数据集。如果要在建模过程中考虑时间变量,就必须对其进行转换。常用的转换有如下几种:
1.转换为距某一基准时间的时间长短,例如,“距离××年××月××日的天数”、“距离下一次春节的周数”等。
2.转换为季节性信息,例如,一年中第几季度或第几个月,每个季度或月对应于一个二元哑变量。
很多情形下可以考虑对时间进行多种转换,把所有可能影响因变量的时间信息都放人建模过程中。例如,对于某些食品的购买量而言,不仅存在节日效应,也存在季节性效应,这时就需要同时使用上述两种转换。
六、异常值
自变量的异常值对一些模型会产生很大影响。在图2.2 的示例中,大部分数据点的,值都分布在-2.2 和2.4 之间,但有一个数据点的x值为8,它对拟合的回归线会有很大的影响;如果它落在点0或点6,拟合出的回归线分别为线a和线b,它们的差别颇大。
因变量的异常值同样可能对模型有很大影响,在这里不赘述。
第五章将介绍的聚类算法可以用来发现异常值,如果少数几个观测自成一类,它们很有可能是异常值。发现异常值后需要查看它们为什么异常。
前言/序言
教材建设是大学人才培养和知识传授的重要组成部分。对管理教育而言,教材建设尤为重要,一流的商学院不仅要有一流的师资力量、一流的生源、一流的教学管理水平,而且必须使用一流的教科书。一流的管理类教科书必须满足以下标准:第一,能把所在领域的基础知识以全面、系统的方式和与读者友好的语言呈献给读者;第二,必须有时代感,能把学科前沿的研究成果囊括进去;第三,必须做到理论和实务(包括案例分析)相结合,有很强的实用性;第四,能够启发学生思考现实的管理问题,培养他们分析问题和解决问题的能力;第五,可以作为研究人员和管理人士的工具书。
中国的管理教育是伴随改革开放而产生的。真正意义上的管理教育在中国不过十多年的历史,但巨大的市场需求使得管理教育成为中国高等教育各学科中发展最快的领域,管理类教科书市场异常繁荣。但总体而言,目前国内市场上管理类教科书的水平仍不能令人满意。国内教科书作者大多数在所涉及领域并没有真正的原创性研究和学术贡献,所撰写的教科书普遍停留在对国外教科书的内容进行中国式排列组合的水平上;国外引进的原版教科书虽然具有学术上的先进性,但由于其写作背景是外国的管理实践和制度安排,案例也都是取自于西方发达国家,对中国读者而言,总有一种隔靴搔痒的感觉。如何写出一流的中国版的管理类教材,是中国管理教育发展面临的重要任务。
北京大学光华管理学院一直重视教材建设工作。1999年夏,我们曾与经济科学出版社签约,以每本20万元的稿酬,向全国征集MBA教科书作者。这个计划公布之后,我们收到了十几本教科书的写作方案。
数据挖掘与应用/北京大学光华管理学院教材 [Data mining and its application] 下载 mobi epub pdf txt 电子书 格式
数据挖掘与应用/北京大学光华管理学院教材 [Data mining and its application] 下载 mobi pdf epub txt 电子书 格式 2024
评分
☆☆☆☆☆
写的很不错的书,推荐
评分
☆☆☆☆☆
嗯 用自己学院的书 恩恩
评分
☆☆☆☆☆
读了这本书之后,北京大学光华管理学院教材·数据挖掘与应用,超值。买书就来来京东商城。价格还比别家便宜,还免邮费不错,速度还真是快而且都是正版书。,买回来觉得还是非常值的。我喜欢看书,喜欢看各种各样的书,看的很杂,文学名著,流行小说都看,只要作者的文笔不是太差,总能让我从头到脚看完整本书。只不过很多时候是当成故事来看,看完了感叹一番也就丢下了。所在来这里买书是非常明智的。然而,目前社会上还有许多人被一些价值不大的东西所束缚,却自得其乐,还觉得很满足。经过几百年的探索和发展,人们对物质需求已不再迫切,但对于精神自由的需求却无端被抹杀了。总之,我认为现代人最缺乏的就是一种开阔进取,寻找最大自由的精神。中国人讲虚实相生,天人合一的思想,于空寂处见流行,于流行处见空寂,从而获得对于道的体悟,唯道集虚。这在传统的艺术中得到了充分的体现,因此中国古代的绘画,提倡留白、布白,用空白来表现丰富多彩的想象空间和广博深广的人生意味,体现了包纳万物、吞吐一切的胸襟和情怀。让我得到了一种生活情趣和审美方式,伴着笔墨的清香,细细体味,那自由孤寂的灵魂,高尚清真的人格魅力,在寻求美的道路上指引着我,让我抛弃浮躁的世俗,向美学丛林的深处迈进。合上书,闭上眼,书的余香犹存,而我脑海里浮现的,是一个皎皎明月,仙仙白云,鸿雁高翔,缀叶如雨的冲淡清幽境界。愿我们身边多一些主教般光明的使者,有更多人能加入到助人为乐、见义勇为的队伍中来。社会需要这样的人,世界需要这样的人,只有这样我们才能创造我们的生活,数据挖掘与应用全面地介绍了数据挖掘的相关主题.包括数据理解与数据准备、关联规则挖掘、多元统计中的降维方法、聚类分析、神经网络、决策树方法、模型评估等内容。全书体系完整,文字精炼,注重对数据挖掘方法的直觉理解及其应用同时,保持了一定的严谨性,为学生理解和运用这些方法提供了坚实的基础。数据挖掘与应用实例丰富,并附有相应程序,以便于学生尽快理解相关内容并用以解决实际问题。数据挖掘与应用配有教辅,可以免费提供给任课教师使用。如需要,欢迎填写书后的教师反馈及课件申请表’索取。我曾经属于后一类。那时,我处于极度危险的境地。看薛老师这些话,你能觉得这是一个真实的老师,她说的话就象是邻居唠家常那样真诚自然。对于书中她大胆、直率的言辞,我很钦佩,不是每个人都有这种胆识、思维的。她能把一件看似简单惯常的事情剖析提头头是道,透过了表象看到了它的内在根源。她有勇气把一些不同与大家都说的话写在纸上,让别人看,虽然多数人心理或许也如她所想。但凭这一点儿,就让人佩服至极。比如,她对老师象蜡烛、春蚕,没有教不好的学生,只有教不好的老师这
评分
☆☆☆☆☆
买了很多数据挖掘的书
评分
☆☆☆☆☆
北京大学光华管理学院教材·商务统计系列:数据挖掘与应用
评分
☆☆☆☆☆
嗯 用自己学院的书 恩恩
评分
☆☆☆☆☆
买了很多数据挖掘的书
评分
☆☆☆☆☆
数据挖掘好书
评分
☆☆☆☆☆
还不错。
数据挖掘与应用/北京大学光华管理学院教材 [Data mining and its application] mobi epub pdf txt 电子书 格式下载 2024