内容简介
《带跳的随机微分方程理论及其应用(英文版)》是一部讲述随机微分方程及其应用的教程。内容全面,讲述如何很好地引入和理解ito积分,确定了ito微分规则,解决了求解sde的方法,阐述了girsanov定理,并且获得了sde的弱解。书中也讲述了如何解决滤波问题、鞅表示定理,解决了金融市场的期权定价问题以及著名的black-scholes公式和其他重要结果。特别地,书中提供了研究市场中金融问题的倒向随机技巧和反射sed技巧,以便更好地研究优化随机样本控制问题。这两个技巧十分高效有力,还可以应用于解决自然和科学中的其他问题。
内页插图
目录
preface
acknowledgement
abbreviations and some explanations
Ⅰ stochastic differential equations with jumps inrd
1 martingale theory and the stochastic integral for point
processes
1.1 concept of a martingale
1.2 stopping times. predictable process
1.3 martingales with discrete time
1.4 uniform integrability and martingales
1.5 martingales with continuous time
1.6 doob-meyer decomposition theorem
1.7 poisson random measure and its existence
1.8 poisson point process and its existence
1.9 stochastic integral for point process. square integrable mar tingales
2 brownian motion, stochastic integral and ito's formula
2.1 brownian motion and its nowhere differentiability
2.2 spaces 0 and z?
2.3 ito's integrals on l2
2.4 ito's integrals on l2,loc
2.5 stochastic integrals with respect to martingales
2.6 ito's formula for continuous semi-martingales
2.7 ito's formula for semi-martingales with jumps
2.8 ito's formula for d-dimensional semi-martingales. integra tion by parts
2.9 independence of bm and poisson point processes
2.10 some examples
2.11 strong markov property of bm and poisson point processes
2.12 martingale representation theorem
3 stochastic differential equations
3.1 strong solutions to sde with jumps
3.1.1 notation
3.1.2 a priori estimate and uniqueness of solutions
3.1.3 existence of solutions for the lipschitzian case
3.2 exponential solutions to linear sde with jumps
3.3 girsanov transformation and weak solutions of sde with jumps
3.4 examples of weak solutions
4 some useful tools in stochastic differential equations
4.1 yamada-watanabe type theorem
4.2 tanaka type formula and some applications
4.2.1 localization technique
4.2.2 tanaka type formula in d-dimensional space
4.2.3 applications to pathwise uniqueness and convergence of solutions
4.2.4 tanaka type formual in 1-dimensional space
4.2.5 tanaka type formula in the component form
4.2.6 pathwise uniqueness of solutions
4.3 local time and occupation density formula
4.4 krylov estimation
4.4.1 the case for 1-dimensional space
4.4.2 the case for d-dimensional space
4.4.3 applications to convergence of solutions to sde with jumps
5 stochastic differential equations with non-lipschitzian co efficients
5.1 strong solutions. continuous coefficients with pconditions 1
5.2 the skorohod weak convergence technique
5.3 weak solutions. continuous coefficients
5.4 existence of strong solutions and applications to ode
5.5 weak solutions. measurable coefficient case
Ⅱ applications
6 how to use the stochastic calculus to solve sde
6.1 the foundation of applications: ito's formula and girsanov's theorem
6.2 more useful examples
7 linear and non-linear filtering
7.1 solutions of sde with functional coefficients and girsanov theorems
7.2 martingale representation theorems (functional coefficient case)
7.3 non-linear filtering equation
7.4 optimal linear filtering
7.5 continuous linear filtering. kalman-bucy equation
7.6 kalman-bucy equation in multi-dimensional case
7.7 more general continuous linear filtering
7.8 zakai equation
7.9 examples on linear filtering
8 option pricing in a financial market and bsde
8.1 introduction
8.2 a more detailed derivation of the bsde for option pricing
8.3 existence of solutions with bounded stopping times
8.3.1 the general model and its explanation
8.3.2 a priori estimate and uniqueness of a solution
8.3.3 existence of solutions for the lipschitzian case
8.4 explanation of the solution of bsde to option pricing
8.4.1 continuous case
8.4.2 discontinuous case
8.5 black-scholes formula for option pricing. two approaches
8.6 black-scholes formula for markets with jumps
8.7 more general wealth processes and bsdes
8.8 existence of solutions for non-lipschitzian case
8.9 convergence of solutions
8.10 explanation of solutions of bsdes to financial markets
8.11 comparison theorem for bsde with jumps
8.12 explanation of comparison theorem. arbitrage-free market
8.13 solutions for unbounded (terminal) stopping times
8.14 minimal solution for bsde with discontinuous drift
8.15 existence of non-lipschitzian optimal control. bsde case
8.16 existence of discontinuous optimal control. bsdes in rl
8.17 application to pde. feynman-kac formula
9 optimal consumption by h-j-b equation and lagrange method
9.1 optimal consumption
9.2 optimization for a financial market with jumps by the lagrange method
9.2.1 introduction
9.2.2 models
9.2.3 main theorem and proof
9.2.4 applications
9.2.5 concluding remarks
10 comparison theorem and stochastic pathwise control '
10.1 comparison for solutions of stochastic differential equations
10.1.1 1-dimensional space case
10.1.2 component comparison in d-dimensional space
10.1.3 applications to existence of strong solutions. weaker conditions
10.2 weak and pathwise uniqueness for 1-dimensional sde with jumps
10.3 strong solutions for 1-dimensional sde with jumps
10.3.1 non-degenerate case
10.3.2 degenerate and partially-degenerate case
10.4 stochastic pathwise bang-bang control for a non-linear system
10.4.1 non-degenerate case
10.4.2 partially-degenerate case
10.5 bang-bang control for d-dimensional non-linear systems
10.5.1 non-degenerate case
10.5.2 partially-degenerate case
11 stochastic population conttrol and reflecting sde
11.1 introduction
11.2 notation
11.3 skorohod's problem and its solutions
11.4 moment estimates and uniqueness of solutions to rsde
11.5 solutions for rsde with jumps and with continuous coef- ficients
11.6 solutions for rsde with jumps and with discontinuous co- etticients
11.7 solutions to population sde and their properties
11.8 comparison of solutions and stochastic population control
11.9 caculation of solutions to population rsde
12 maximum principle for stochastic systems with jumps
12.1 introduction
12.2 basic assumption and notation
12.3 maximum principle and adjoint equation as bsde with jumps
12.4 a simple example
12.5 intuitive thinking on the maximum principle
12.6 some lemmas
12.7 proof of theorem 354
a a short review on basic probability theory
a.1 probability space, random variable and mathematical ex- pectation
a.2 gaussian vectors and poisson random variables
a.3 conditional mathematical expectation and its properties
a.4 random processes and the kolmogorov theorem
b space d and skorohod's metric
c monotone class theorems. convergence of random processes41
c.1 monotone class theorems
c.2 convergence of random variables
c.3 convergence of random processes and stochastic integrals
references
index
前言/序言
好的,以下是关于一本名为《带跳的随机微分方程理论及其应用(英文版)》的图书的详细简介,内容不涉及原书的任何具体主题: 书名: 非线性动力学与混沌系统的几何分析 作者: [此处应填写作者姓名] 出版年份: [此处应填写出版年份] 出版社: [此处应填写出版社名称] ISBN: [此处应填写ISBN] --- 图书简介: 聚焦复杂系统的精确数学描述与几何直觉 本书深入探讨了非线性动力学系统的理论框架、混沌现象的数学表征,以及如何运用微分几何和拓扑学的强大工具来解析这些复杂系统的长期行为。本书旨在为研究人员和高级研究生提供一个扎实的、侧重于几何直觉和严格数学论证的视角,用以理解那些对初始条件高度敏感的系统。 第一部分:连续流与拓扑动力学基础 本书开篇部分建立了一套严谨的数学基础,主要围绕连续时间动力学系统(即常微分方程组所描述的系统)展开。我们首先回顾了经典解的存在性与唯一性定理,随后迅速过渡到更具挑战性的非线性领域。 关键内容包括: 相空间几何与流的结构: 详细阐述了相空间、流的概念,以及如何通过向量场在流的生成元上诱导的几何结构来理解系统的演化。重点讨论了流的同宿轨道和异宿轨道的拓扑性质。 稳定性理论的几何视角: 重新审视了李雅普诺夫稳定性理论,但侧重于不变集和极限环的几何特性。通过对鞍点、结点、霍普夫分岔等关键结构进行拓扑分类,揭示了其在低维空间中的嵌入性质。 庞加莱截面与周期性: 引入庞加莱映射作为分析周期解和准周期解的有效工具。深入分析了庞加莱截面上不动点和周期点的稳定性与指数图的构造。 第二部分:混沌系统的定性与量化 本书的第二部分集中于那些表现出极端敏感性的系统——混沌系统。我们不满足于现象的描述,而是致力于提供精确的数学量化工具和拓扑证据。 混沌的拓扑表征: 拓扑熵与传递性: 首次引入拓扑熵作为衡量系统复杂性的核心不变量。详细阐述了系统拓扑传递性的定义,并证明了在满足特定条件下,拓扑熵为正与存在稠密的周期轨道之间的联系。 吸引子的几何结构: 探讨了奇异吸引子的几何特性。特别关注洛伦兹吸引子(或其他典型的湍流模型吸引子)的自相似性,引入了豪斯多夫维数和关联维数的概念,用以精确计算吸引子的“分形”结构。 混沌的度量——李雅普诺夫指数: 详尽推导了李雅普诺夫指数的定义及其在判断系统是否为混沌中的核心作用。我们不仅计算了指数,还探讨了指数谱的演化,以及它们如何反映系统在相空间中的扩张和收缩率。 第三部分:微分几何工具在动力学中的应用 本部分是本书区别于传统动力学教材的关键。我们展示了如何利用现代微分几何和拓扑学的工具,对高维非线性系统的行为进行更深层次的洞察。 微分几何视角下的分析: 微分形式与守恒律: 利用微分形式、外微分和李导数,重新考察了系统的守恒量和李雅普诺夫函数。特别是,对于具有对称性的系统,运用李群的理论来识别不变流和相应的守恒量。 流的曲率与拓扑不变量: 讨论了如何在向量场诱导的流上定义曲率的概念,及其与系统长期行为的关联。引入庞加莱-霍普夫定理的思想,探讨了向量场零点索引与全局拓扑结构的关系。 不变流形理论的拓扑解释: 对中心流形和形式不变流形的分析,不再局限于泰勒展开的局部逼近,而是从更宏观的拓扑结构角度,解释了它们在特定参数区域内对全局解的捕获机制。这包括对流形上的几何奇点的处理。 第四部分:离散系统与迭代映射 为了提供更全面的视角,本书最后一部分转向了时间上离散化的系统,即迭代映射。 离散映射的混沌: 重点分析了洛伦兹映射和费根鲍姆映射,作为从连续系统过渡到离散系统的桥梁。 分岔理论的几何起源: 几何地分析了周期倍增分岔(倍周期序列)的出现,并利用普适性常数的几何解释,展示了混沌出现的普适性机制,即便在不同类型的映射中也表现出惊人的相似性。 目标读者与价值 本书适合于数学、物理学、工程学、以及理论生物学中从事复杂系统建模与分析的研究生和专业人员。它要求读者具备扎实的实分析和基础微分几何知识。本书的价值在于,它将抽象的几何概念转化为理解复杂动力学行为的直观工具,为读者提供了一套超越数值模拟的、具有深刻洞察力的分析方法。通过本书,读者将能够以几何的语言,精确地“看见”混沌系统的内在秩序。