內容簡介
《帶跳的隨機微分方程理論及其應用(英文版)》是一部講述隨機微分方程及其應用的教程。內容全麵,講述如何很好地引入和理解ito積分,確定瞭ito微分規則,解決瞭求解sde的方法,闡述瞭girsanov定理,並且獲得瞭sde的弱解。書中也講述瞭如何解決濾波問題、鞅錶示定理,解決瞭金融市場的期權定價問題以及著名的black-scholes公式和其他重要結果。特彆地,書中提供瞭研究市場中金融問題的倒嚮隨機技巧和反射sed技巧,以便更好地研究優化隨機樣本控製問題。這兩個技巧十分高效有力,還可以應用於解決自然和科學中的其他問題。
內頁插圖
目錄
preface
acknowledgement
abbreviations and some explanations
Ⅰ stochastic differential equations with jumps inrd
1 martingale theory and the stochastic integral for point
processes
1.1 concept of a martingale
1.2 stopping times. predictable process
1.3 martingales with discrete time
1.4 uniform integrability and martingales
1.5 martingales with continuous time
1.6 doob-meyer decomposition theorem
1.7 poisson random measure and its existence
1.8 poisson point process and its existence
1.9 stochastic integral for point process. square integrable mar tingales
2 brownian motion, stochastic integral and ito's formula
2.1 brownian motion and its nowhere differentiability
2.2 spaces 0 and z?
2.3 ito's integrals on l2
2.4 ito's integrals on l2,loc
2.5 stochastic integrals with respect to martingales
2.6 ito's formula for continuous semi-martingales
2.7 ito's formula for semi-martingales with jumps
2.8 ito's formula for d-dimensional semi-martingales. integra tion by parts
2.9 independence of bm and poisson point processes
2.10 some examples
2.11 strong markov property of bm and poisson point processes
2.12 martingale representation theorem
3 stochastic differential equations
3.1 strong solutions to sde with jumps
3.1.1 notation
3.1.2 a priori estimate and uniqueness of solutions
3.1.3 existence of solutions for the lipschitzian case
3.2 exponential solutions to linear sde with jumps
3.3 girsanov transformation and weak solutions of sde with jumps
3.4 examples of weak solutions
4 some useful tools in stochastic differential equations
4.1 yamada-watanabe type theorem
4.2 tanaka type formula and some applications
4.2.1 localization technique
4.2.2 tanaka type formula in d-dimensional space
4.2.3 applications to pathwise uniqueness and convergence of solutions
4.2.4 tanaka type formual in 1-dimensional space
4.2.5 tanaka type formula in the component form
4.2.6 pathwise uniqueness of solutions
4.3 local time and occupation density formula
4.4 krylov estimation
4.4.1 the case for 1-dimensional space
4.4.2 the case for d-dimensional space
4.4.3 applications to convergence of solutions to sde with jumps
5 stochastic differential equations with non-lipschitzian co efficients
5.1 strong solutions. continuous coefficients with pconditions 1
5.2 the skorohod weak convergence technique
5.3 weak solutions. continuous coefficients
5.4 existence of strong solutions and applications to ode
5.5 weak solutions. measurable coefficient case
Ⅱ applications
6 how to use the stochastic calculus to solve sde
6.1 the foundation of applications: ito's formula and girsanov's theorem
6.2 more useful examples
7 linear and non-linear filtering
7.1 solutions of sde with functional coefficients and girsanov theorems
7.2 martingale representation theorems (functional coefficient case)
7.3 non-linear filtering equation
7.4 optimal linear filtering
7.5 continuous linear filtering. kalman-bucy equation
7.6 kalman-bucy equation in multi-dimensional case
7.7 more general continuous linear filtering
7.8 zakai equation
7.9 examples on linear filtering
8 option pricing in a financial market and bsde
8.1 introduction
8.2 a more detailed derivation of the bsde for option pricing
8.3 existence of solutions with bounded stopping times
8.3.1 the general model and its explanation
8.3.2 a priori estimate and uniqueness of a solution
8.3.3 existence of solutions for the lipschitzian case
8.4 explanation of the solution of bsde to option pricing
8.4.1 continuous case
8.4.2 discontinuous case
8.5 black-scholes formula for option pricing. two approaches
8.6 black-scholes formula for markets with jumps
8.7 more general wealth processes and bsdes
8.8 existence of solutions for non-lipschitzian case
8.9 convergence of solutions
8.10 explanation of solutions of bsdes to financial markets
8.11 comparison theorem for bsde with jumps
8.12 explanation of comparison theorem. arbitrage-free market
8.13 solutions for unbounded (terminal) stopping times
8.14 minimal solution for bsde with discontinuous drift
8.15 existence of non-lipschitzian optimal control. bsde case
8.16 existence of discontinuous optimal control. bsdes in rl
8.17 application to pde. feynman-kac formula
9 optimal consumption by h-j-b equation and lagrange method
9.1 optimal consumption
9.2 optimization for a financial market with jumps by the lagrange method
9.2.1 introduction
9.2.2 models
9.2.3 main theorem and proof
9.2.4 applications
9.2.5 concluding remarks
10 comparison theorem and stochastic pathwise control '
10.1 comparison for solutions of stochastic differential equations
10.1.1 1-dimensional space case
10.1.2 component comparison in d-dimensional space
10.1.3 applications to existence of strong solutions. weaker conditions
10.2 weak and pathwise uniqueness for 1-dimensional sde with jumps
10.3 strong solutions for 1-dimensional sde with jumps
10.3.1 non-degenerate case
10.3.2 degenerate and partially-degenerate case
10.4 stochastic pathwise bang-bang control for a non-linear system
10.4.1 non-degenerate case
10.4.2 partially-degenerate case
10.5 bang-bang control for d-dimensional non-linear systems
10.5.1 non-degenerate case
10.5.2 partially-degenerate case
11 stochastic population conttrol and reflecting sde
11.1 introduction
11.2 notation
11.3 skorohod's problem and its solutions
11.4 moment estimates and uniqueness of solutions to rsde
11.5 solutions for rsde with jumps and with continuous coef- ficients
11.6 solutions for rsde with jumps and with discontinuous co- etticients
11.7 solutions to population sde and their properties
11.8 comparison of solutions and stochastic population control
11.9 caculation of solutions to population rsde
12 maximum principle for stochastic systems with jumps
12.1 introduction
12.2 basic assumption and notation
12.3 maximum principle and adjoint equation as bsde with jumps
12.4 a simple example
12.5 intuitive thinking on the maximum principle
12.6 some lemmas
12.7 proof of theorem 354
a a short review on basic probability theory
a.1 probability space, random variable and mathematical ex- pectation
a.2 gaussian vectors and poisson random variables
a.3 conditional mathematical expectation and its properties
a.4 random processes and the kolmogorov theorem
b space d and skorohod's metric
c monotone class theorems. convergence of random processes41
c.1 monotone class theorems
c.2 convergence of random variables
c.3 convergence of random processes and stochastic integrals
references
index
前言/序言
好的,以下是關於一本名為《帶跳的隨機微分方程理論及其應用(英文版)》的圖書的詳細簡介,內容不涉及原書的任何具體主題: 書名: 非綫性動力學與混沌係統的幾何分析 作者: [此處應填寫作者姓名] 齣版年份: [此處應填寫齣版年份] 齣版社: [此處應填寫齣版社名稱] ISBN: [此處應填寫ISBN] --- 圖書簡介: 聚焦復雜係統的精確數學描述與幾何直覺 本書深入探討瞭非綫性動力學係統的理論框架、混沌現象的數學錶徵,以及如何運用微分幾何和拓撲學的強大工具來解析這些復雜係統的長期行為。本書旨在為研究人員和高級研究生提供一個紮實的、側重於幾何直覺和嚴格數學論證的視角,用以理解那些對初始條件高度敏感的係統。 第一部分:連續流與拓撲動力學基礎 本書開篇部分建立瞭一套嚴謹的數學基礎,主要圍繞連續時間動力學係統(即常微分方程組所描述的係統)展開。我們首先迴顧瞭經典解的存在性與唯一性定理,隨後迅速過渡到更具挑戰性的非綫性領域。 關鍵內容包括: 相空間幾何與流的結構: 詳細闡述瞭相空間、流的概念,以及如何通過嚮量場在流的生成元上誘導的幾何結構來理解係統的演化。重點討論瞭流的同宿軌道和異宿軌道的拓撲性質。 穩定性理論的幾何視角: 重新審視瞭李雅普諾夫穩定性理論,但側重於不變集和極限環的幾何特性。通過對鞍點、結點、霍普夫分岔等關鍵結構進行拓撲分類,揭示瞭其在低維空間中的嵌入性質。 龐加萊截麵與周期性: 引入龐加萊映射作為分析周期解和準周期解的有效工具。深入分析瞭龐加萊截麵上不動點和周期點的穩定性與指數圖的構造。 第二部分:混沌係統的定性與量化 本書的第二部分集中於那些錶現齣極端敏感性的係統——混沌係統。我們不滿足於現象的描述,而是緻力於提供精確的數學量化工具和拓撲證據。 混沌的拓撲錶徵: 拓撲熵與傳遞性: 首次引入拓撲熵作為衡量係統復雜性的核心不變量。詳細闡述瞭係統拓撲傳遞性的定義,並證明瞭在滿足特定條件下,拓撲熵為正與存在稠密的周期軌道之間的聯係。 吸引子的幾何結構: 探討瞭奇異吸引子的幾何特性。特彆關注洛倫茲吸引子(或其他典型的湍流模型吸引子)的自相似性,引入瞭豪斯多夫維數和關聯維數的概念,用以精確計算吸引子的“分形”結構。 混沌的度量——李雅普諾夫指數: 詳盡推導瞭李雅普諾夫指數的定義及其在判斷係統是否為混沌中的核心作用。我們不僅計算瞭指數,還探討瞭指數譜的演化,以及它們如何反映係統在相空間中的擴張和收縮率。 第三部分:微分幾何工具在動力學中的應用 本部分是本書區彆於傳統動力學教材的關鍵。我們展示瞭如何利用現代微分幾何和拓撲學的工具,對高維非綫性係統的行為進行更深層次的洞察。 微分幾何視角下的分析: 微分形式與守恒律: 利用微分形式、外微分和李導數,重新考察瞭係統的守恒量和李雅普諾夫函數。特彆是,對於具有對稱性的係統,運用李群的理論來識彆不變流和相應的守恒量。 流的麯率與拓撲不變量: 討論瞭如何在嚮量場誘導的流上定義麯率的概念,及其與係統長期行為的關聯。引入龐加萊-霍普夫定理的思想,探討瞭嚮量場零點索引與全局拓撲結構的關係。 不變流形理論的拓撲解釋: 對中心流形和形式不變流形的分析,不再局限於泰勒展開的局部逼近,而是從更宏觀的拓撲結構角度,解釋瞭它們在特定參數區域內對全局解的捕獲機製。這包括對流形上的幾何奇點的處理。 第四部分:離散係統與迭代映射 為瞭提供更全麵的視角,本書最後一部分轉嚮瞭時間上離散化的係統,即迭代映射。 離散映射的混沌: 重點分析瞭洛倫茲映射和費根鮑姆映射,作為從連續係統過渡到離散係統的橋梁。 分岔理論的幾何起源: 幾何地分析瞭周期倍增分岔(倍周期序列)的齣現,並利用普適性常數的幾何解釋,展示瞭混沌齣現的普適性機製,即便在不同類型的映射中也錶現齣驚人的相似性。 目標讀者與價值 本書適閤於數學、物理學、工程學、以及理論生物學中從事復雜係統建模與分析的研究生和專業人員。它要求讀者具備紮實的實分析和基礎微分幾何知識。本書的價值在於,它將抽象的幾何概念轉化為理解復雜動力學行為的直觀工具,為讀者提供瞭一套超越數值模擬的、具有深刻洞察力的分析方法。通過本書,讀者將能夠以幾何的語言,精確地“看見”混沌係統的內在秩序。