内容简介
The past 40 years have seen the emergence worldwide of a growing desire to take positive actions to restore and protect our environment from the degrading effects of all forms of pollution. Since this pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for "zero discharge" can be construed as an unrealistic demand for zero waste. However, as long as waste exists, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. In recent years, the international environment community, especially in China, has been increasingly concerned about the stresses imposed on the natural environment by many chemical and energy-generating processes. As a result, the whole world is witnessing an accelerated development and implementation of new green technologies which are called to provide ecologically responsible solutions for the much needed supply of drinking water and clean air.
作者简介
Qijin Geng, Ph.D, Associate Professor of College of Chemistry-Chemical & Environmental Engineering, Weifang Universit)r. The membership in Chemistry Association of China.
Add: College of Chemistry and Chemical Engineering, Weifang University, Shandong Province, 261061, P. R. China
Qijin Geng was born in China in December, 1969. He gained his bachelor degree from College of Textile Chemical Engineering in Qingdao University in 1992. The master degree of applied chemistry was obtained in Jinan University in 2004 and Ph.D degree of chemical engineering at Qingdao University of Science and Technology, Shandong Province, P. R. China in 2011. The speciality is photocatalytic decomposition of waste water and gaseous pollutants, building materials, nano-sized material preparation, and multi-phase fluidization reaction engineering.
内页插图
目录
Foreword
1 Progress of Photocatalysis Science and Technology
Introduction
1.1 A briefoverview of photocatalysis
1.2 Photocatalytic reactor design and application in air and waste water treatments
1.2.1 Photon transferlimitations and overcoming measurements
1.2.2 Mass transfer limitations and overcoming measurements
1.2.3 Other engineering problems in reactor design
1.3 Future prospects
2 Fundamentals of Photocatalysis
Introduction
2.1 Photocatalysismechanism
2.1.1 Reductive mechanism
2.1.2 Oxidativemechanism
2.1.3 Combined redox mechanism
2.2 Photoelectrochemicalbasis of photocatalysis
2.3 Time scales for primary processes
2.4 Trapping of electrons and holes
2.5 Factors affecting electron transfer efficiency
2.6 Oxidizing species at the Ti02 surface
2.6.1 Role of molecular oxygen
2.6.2 Effect of crystal face
2.7 Relation between interfacial electron transfer rate constants and driving force
2.8 Summary
3 Heterogeneous Photocatalytic Degradation of Waste Water Contairung Phenolic Compounds
Introduction
3.1 Fundamentals of photocatalysis of phenols
3.1.1 Basic mechanism
3.1.2 Performance of phenol, chlorophenol and nitrophenol in photocatalysis
3.1.3 Phenol and its intermediates formed and detected
3.1.4 Pathways of phenol photodegradation
3.1.5 Kinetic model for phenol photodeUadation
3.2 Review of photocatalytic oxidation of phenolic compounds
3.3 Influencing factors on photocatalytic oxidation of phenolic compounds
3.3.1 Substituted group of phenolic compounds
3.3.2 Structure property and composition of photocatalyst
3.3.3 Lightintensity and wavelength
3.3.4 Initialconcentration of phenolic compounds
3.3.5 Photocatalystloading
3.3.6 Medium pH value
3.3.7 Co-existing substances
3.3.8 Oxidants/electron acceptor added
3.3.9 Calcination temperature of photocatalyst
3.3.10 Dopant on photocatalyst
3.4 Conclusion and outlooks
4 Heterogeneous Photocatalytic Degradation of Waste Water Containing Dyes
Introduction
4.1 Introduction of dyes
4.2 Experimental techniques applied in photocatalytic degradation of dye
4.3 Mechanisms and pathways of photocatalysis
4.3.1 Basic mechanism
4.3.2 Possiblepathways
4.3.3 Interaction mechanism between dye molecule and inorganic ion
4.3.4 Basic models of photocatalyses and pathways
4.4 Operational factors influencing on the photocatalytic degradation of dyes
4.4.1 Dyeconcentration
4.4.2 Catalystamount
4.4 ,3 pH value
4.4.4 Oxidizing agent
4.4.5 Light intensity and irradiation time
4.4.6 Dissolved oxygen
4.4.7 Doped photocatalyst
4.4.8 Dopant content
4.4.9 Calcination temperature of photocatalyst
4.4.10 Dye structure
4.4.11 Molecular size of the dyes
4.4.12 Inorganic ions added
4.5 Conclusions and prospect
5 Heterogeneous Photocatalytlic Removal of lnorganic Ions From Waste Water
Introduction
5.1 Fundamentals of As photocatalytic remova
5.1.1 States of inorganic and organic arse
5.1.2 Basic mechanisms of arsenic remova
5.2 Review of photooxidation of As(Ⅲ) and organic arsenic
5.2.1 Initial works and recent research advances
5.2.2 Modified photocatalyst to enhance arsenic removal
5.3 Influencing factors for photocatalytic oxidation of As
5.3.1 Co-existing solutes
5.3.2 pH value
5.3.3 Photocatalyst size
……
6 Heterogeneous Photocatalytic Degradation of Gaseous Pollutants
前言/序言
The past 40 years have seen the emergence worldwide of a growing desire to take positive actions to restore and protect our environment from the degrading effects of all forms of pollution. Since this pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for "zero discharge" can be construed as an unrealistic demand for zero waste. However, as long as waste exists, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. In recent years, the international environment community, especially in China, has been increasingly concerned about the stresses imposed on the natural environment by many chemical and energy-generating processes. As a result, the whole world is witnessing an accelerated development and implementation of new green technologies which are called to provide ecologically responsible solutions for the much needed supply of drinking water and clean air.
Photocatalysis, hold great promise for delivering these ground-breaking technologies, is a truly environmentally friendly process where irradiation, either near UV or solar light, and promotes photoexcitation of semiconductor solid surfaces. As a result, mobile electrons and positive surface charges are generated. These excited sites and electrons accelerate oxidation and reduction reactions,which are essential steps for pollutant degradation. Photocatalysis and its related technologicalissues have been strongly influenced by recent publications.
The treatment of the various engineering and science presented in "Advances of Photocatalysis Science & Engineering for Ti02-Based Photocatalysts" will show how a process concerned their formulation of the subject flows naturally from the fundamental principles and theory of chemistry,physics, and mathematics. This emphasis on fundamental science recognizes that engineering practice has in recent years become more firmly based on scientific principles rather than its earlier dependency on the empirical accumulation of facts. The present book aims at offering a comprehensive overview ofthe state-of-the-art photocatalytic science and technology. It will be seen in this book of the fundamentals and selected applications of photocatalysis, principally on titanium dioxide based photocatalyst, that there is a host of reports concerned the waste water and gaseous pollutants treatment. The work will be divided into several sections as follows.
环境修复中的前沿科技:从材料科学到可持续治理的深度探索 图书名称: 环境修复中的前沿科技:从材料科学到可持续治理的深度探索 内容提要: 本书旨在全面、深入地探讨当前环境污染治理领域中,跨学科前沿技术的最新发展、核心理论基础及其在实际应用中的挑战与机遇。全书聚焦于超越传统单一技术路径的集成化、智能化和可持续化解决方案,为环境科学、化学工程、材料科学以及可持续发展政策制定者提供一个前瞻性的知识框架和实践指南。 本书摒弃对单一成熟技术的重复叙述,而是将重点放在那些正处于爆发性增长期、具有颠覆性潜力的新兴科学领域,特别关注其如何应对日益复杂的全球环境问题,如持久性有机污染物(POPs)的降解、微塑料污染的控制,以及水循环系统中的新型污染物(NMPs)的去除。 第一部分:高级吸附与分离技术的创新驱动 本部分着重探讨新一代功能化吸附剂和高效分离膜材料的革命性进展。我们深入分析了基于共价有机框架(COFs)和金属有机框架(MOFs)的结构设计原理,阐述如何通过精确调控孔径、表面化学特性及拓扑结构,实现对特定污染物(如重金属离子、特定类型染料或药物残留)的超高选择性吸附。内容涵盖了MOFs在气体分离(如二氧化碳捕集与利用,CCU)中的最新应用案例,以及COFs在水相体系中对特定阴离子或阳离子的功能化设计策略。 此外,本部分详细介绍了智能响应性分离材料的开发。这包括对pH值、温度、光照或电场敏感的聚合物膜和纳米复合材料的研究。重点讨论了如何利用这些材料实现污染物的可逆捕获与再生,从而大幅降低运行能耗和二次污染风险。例如,如何设计一种在特定pH下可吸附污染物,而在中性环境下可高效释放污染物的智能水凝胶体系,以实现吸附剂的循环利用。 第二部分:生物催化与合成生物学在环境修复中的角色 本部分将目光投向生命科学与工程的交叉领域,探讨如何利用生物体及其衍生酶类进行高效、绿色的环境净化。核心内容包括定向进化和代谢工程在改造微生物降解特定顽固污染物方面的最新突破。我们探讨了利用合成生物学工具,设计出能够高效矿化(而非仅仅转化)难降解有机物的工程菌株,特别是针对全氟和多氟烷基物质(PFASs)的生物修复潜力。 书中详细分析了酶催化降解的动力学模型和反应机理,重点介绍固定化酶技术在工业废水处理中的应用前景,包括使用新型载体(如磁性纳米颗粒或多孔碳材料)负载关键水解酶或氧化还原酶,以提高酶的稳定性和重复使用性。此外,我们还讨论了微生物群落修复(Microbial Community Engineering)在土壤与地下水修复中的复杂性与前景。 第三部分:先进氧化过程(AOPs)的能源效率革命 虽然AOPs是成熟领域,但本部分聚焦于其能源效率的提升和新型活化机制的探索。我们重点讨论了如何通过非传统能源驱动的AOPs来克服传统方法(如紫外光/过氧化氢)的高能耗问题。这包括电化学高级氧化(EAOPs)的最新进展,如采用新型电极材料(如掺氮的BCC/Doped Boron-Doped Diamond)来提高自由基产率和电能利用率。 书中对声化学/超声波辅助的氧化过程进行了深入分析,探讨了空化效应产生的极端局部条件如何协同其他氧化剂(如臭氧或过氧单硫酸盐)来加速污染物降解。此外,本部分还涵盖了低温等离子体技术在气相和液相污染物处理中的应用,特别是其对挥发性有机物(VOCs)的即时、高效破坏能力。 第四部分:多尺度模拟与智能化决策支持 本部分强调计算科学在环境工程中的赋能作用。内容涵盖了如何利用第一性原理计算(DFT)和分子动力学模拟来预测新型纳米材料与污染物分子间的相互作用能、扩散路径和反应活化能垒,从而指导材料的理性设计。 更进一步,本书探讨了人工智能(AI)与机器学习(ML)在环境修复系统中的集成应用。这包括利用深度学习模型对复杂的环境数据(如水质、污染物浓度、反应参数)进行实时预测和优化控制。讨论了如何构建数字孪生(Digital Twin)模型,用于模拟和优化大型污染场地修复工程的长期运行策略,实现资源投入的最优化配置和修复效率的最大化。 第五部分:可持续性与生命周期评估(LCA) 本部分是全书的总结与升华,强调任何环境技术都必须置于可持续发展的宏观框架下进行评估。我们详细阐述了环境修复技术的生命周期评估(LCA)方法论,并将其应用于比较不同治理技术(如传统的物理化学法与新兴的生物/材料耦合技术)的整体环境足迹,包括能源消耗、温室气体排放以及潜在的生态毒性。 书中还探讨了循环经济原则在污染治理中的实践,例如如何从复杂的废水流中回收有价值的元素(如磷、氮、稀有金属),以及如何将固态废弃物转化为环境友好的功能材料,从而实现从“末端治理”向“资源化利用”的根本转变。 目标读者: 本书面向从事环境科学、化学工程、材料科学领域的高年级本科生、研究生、科研人员以及在工业界和政府机构中负责环境技术评估与决策的工程师和管理者。它提供了理解和推进下一代环境污染控制技术所需的深度理论基础和广阔的视野。