內容簡介
The past 40 years have seen the emergence worldwide of a growing desire to take positive actions to restore and protect our environment from the degrading effects of all forms of pollution. Since this pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for "zero discharge" can be construed as an unrealistic demand for zero waste. However, as long as waste exists, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. In recent years, the international environment community, especially in China, has been increasingly concerned about the stresses imposed on the natural environment by many chemical and energy-generating processes. As a result, the whole world is witnessing an accelerated development and implementation of new green technologies which are called to provide ecologically responsible solutions for the much needed supply of drinking water and clean air.
作者簡介
Qijin Geng, Ph.D, Associate Professor of College of Chemistry-Chemical & Environmental Engineering, Weifang Universit)r. The membership in Chemistry Association of China.
Add: College of Chemistry and Chemical Engineering, Weifang University, Shandong Province, 261061, P. R. China
Qijin Geng was born in China in December, 1969. He gained his bachelor degree from College of Textile Chemical Engineering in Qingdao University in 1992. The master degree of applied chemistry was obtained in Jinan University in 2004 and Ph.D degree of chemical engineering at Qingdao University of Science and Technology, Shandong Province, P. R. China in 2011. The speciality is photocatalytic decomposition of waste water and gaseous pollutants, building materials, nano-sized material preparation, and multi-phase fluidization reaction engineering.
內頁插圖
目錄
Foreword
1 Progress of Photocatalysis Science and Technology
Introduction
1.1 A briefoverview of photocatalysis
1.2 Photocatalytic reactor design and application in air and waste water treatments
1.2.1 Photon transferlimitations and overcoming measurements
1.2.2 Mass transfer limitations and overcoming measurements
1.2.3 Other engineering problems in reactor design
1.3 Future prospects
2 Fundamentals of Photocatalysis
Introduction
2.1 Photocatalysismechanism
2.1.1 Reductive mechanism
2.1.2 Oxidativemechanism
2.1.3 Combined redox mechanism
2.2 Photoelectrochemicalbasis of photocatalysis
2.3 Time scales for primary processes
2.4 Trapping of electrons and holes
2.5 Factors affecting electron transfer efficiency
2.6 Oxidizing species at the Ti02 surface
2.6.1 Role of molecular oxygen
2.6.2 Effect of crystal face
2.7 Relation between interfacial electron transfer rate constants and driving force
2.8 Summary
3 Heterogeneous Photocatalytic Degradation of Waste Water Contairung Phenolic Compounds
Introduction
3.1 Fundamentals of photocatalysis of phenols
3.1.1 Basic mechanism
3.1.2 Performance of phenol, chlorophenol and nitrophenol in photocatalysis
3.1.3 Phenol and its intermediates formed and detected
3.1.4 Pathways of phenol photodegradation
3.1.5 Kinetic model for phenol photodeUadation
3.2 Review of photocatalytic oxidation of phenolic compounds
3.3 Influencing factors on photocatalytic oxidation of phenolic compounds
3.3.1 Substituted group of phenolic compounds
3.3.2 Structure property and composition of photocatalyst
3.3.3 Lightintensity and wavelength
3.3.4 Initialconcentration of phenolic compounds
3.3.5 Photocatalystloading
3.3.6 Medium pH value
3.3.7 Co-existing substances
3.3.8 Oxidants/electron acceptor added
3.3.9 Calcination temperature of photocatalyst
3.3.10 Dopant on photocatalyst
3.4 Conclusion and outlooks
4 Heterogeneous Photocatalytic Degradation of Waste Water Containing Dyes
Introduction
4.1 Introduction of dyes
4.2 Experimental techniques applied in photocatalytic degradation of dye
4.3 Mechanisms and pathways of photocatalysis
4.3.1 Basic mechanism
4.3.2 Possiblepathways
4.3.3 Interaction mechanism between dye molecule and inorganic ion
4.3.4 Basic models of photocatalyses and pathways
4.4 Operational factors influencing on the photocatalytic degradation of dyes
4.4.1 Dyeconcentration
4.4.2 Catalystamount
4.4 ,3 pH value
4.4.4 Oxidizing agent
4.4.5 Light intensity and irradiation time
4.4.6 Dissolved oxygen
4.4.7 Doped photocatalyst
4.4.8 Dopant content
4.4.9 Calcination temperature of photocatalyst
4.4.10 Dye structure
4.4.11 Molecular size of the dyes
4.4.12 Inorganic ions added
4.5 Conclusions and prospect
5 Heterogeneous Photocatalytlic Removal of lnorganic Ions From Waste Water
Introduction
5.1 Fundamentals of As photocatalytic remova
5.1.1 States of inorganic and organic arse
5.1.2 Basic mechanisms of arsenic remova
5.2 Review of photooxidation of As(Ⅲ) and organic arsenic
5.2.1 Initial works and recent research advances
5.2.2 Modified photocatalyst to enhance arsenic removal
5.3 Influencing factors for photocatalytic oxidation of As
5.3.1 Co-existing solutes
5.3.2 pH value
5.3.3 Photocatalyst size
……
6 Heterogeneous Photocatalytic Degradation of Gaseous Pollutants
前言/序言
The past 40 years have seen the emergence worldwide of a growing desire to take positive actions to restore and protect our environment from the degrading effects of all forms of pollution. Since this pollution is a direct or indirect consequence of waste, the seemingly idealistic demand for "zero discharge" can be construed as an unrealistic demand for zero waste. However, as long as waste exists, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. In recent years, the international environment community, especially in China, has been increasingly concerned about the stresses imposed on the natural environment by many chemical and energy-generating processes. As a result, the whole world is witnessing an accelerated development and implementation of new green technologies which are called to provide ecologically responsible solutions for the much needed supply of drinking water and clean air.
Photocatalysis, hold great promise for delivering these ground-breaking technologies, is a truly environmentally friendly process where irradiation, either near UV or solar light, and promotes photoexcitation of semiconductor solid surfaces. As a result, mobile electrons and positive surface charges are generated. These excited sites and electrons accelerate oxidation and reduction reactions,which are essential steps for pollutant degradation. Photocatalysis and its related technologicalissues have been strongly influenced by recent publications.
The treatment of the various engineering and science presented in "Advances of Photocatalysis Science & Engineering for Ti02-Based Photocatalysts" will show how a process concerned their formulation of the subject flows naturally from the fundamental principles and theory of chemistry,physics, and mathematics. This emphasis on fundamental science recognizes that engineering practice has in recent years become more firmly based on scientific principles rather than its earlier dependency on the empirical accumulation of facts. The present book aims at offering a comprehensive overview ofthe state-of-the-art photocatalytic science and technology. It will be seen in this book of the fundamentals and selected applications of photocatalysis, principally on titanium dioxide based photocatalyst, that there is a host of reports concerned the waste water and gaseous pollutants treatment. The work will be divided into several sections as follows.
環境修復中的前沿科技:從材料科學到可持續治理的深度探索 圖書名稱: 環境修復中的前沿科技:從材料科學到可持續治理的深度探索 內容提要: 本書旨在全麵、深入地探討當前環境汙染治理領域中,跨學科前沿技術的最新發展、核心理論基礎及其在實際應用中的挑戰與機遇。全書聚焦於超越傳統單一技術路徑的集成化、智能化和可持續化解決方案,為環境科學、化學工程、材料科學以及可持續發展政策製定者提供一個前瞻性的知識框架和實踐指南。 本書摒棄對單一成熟技術的重復敘述,而是將重點放在那些正處於爆發性增長期、具有顛覆性潛力的新興科學領域,特彆關注其如何應對日益復雜的全球環境問題,如持久性有機汙染物(POPs)的降解、微塑料汙染的控製,以及水循環係統中的新型汙染物(NMPs)的去除。 第一部分:高級吸附與分離技術的創新驅動 本部分著重探討新一代功能化吸附劑和高效分離膜材料的革命性進展。我們深入分析瞭基於共價有機框架(COFs)和金屬有機框架(MOFs)的結構設計原理,闡述如何通過精確調控孔徑、錶麵化學特性及拓撲結構,實現對特定汙染物(如重金屬離子、特定類型染料或藥物殘留)的超高選擇性吸附。內容涵蓋瞭MOFs在氣體分離(如二氧化碳捕集與利用,CCU)中的最新應用案例,以及COFs在水相體係中對特定陰離子或陽離子的功能化設計策略。 此外,本部分詳細介紹瞭智能響應性分離材料的開發。這包括對pH值、溫度、光照或電場敏感的聚閤物膜和納米復閤材料的研究。重點討論瞭如何利用這些材料實現汙染物的可逆捕獲與再生,從而大幅降低運行能耗和二次汙染風險。例如,如何設計一種在特定pH下可吸附汙染物,而在中性環境下可高效釋放汙染物的智能水凝膠體係,以實現吸附劑的循環利用。 第二部分:生物催化與閤成生物學在環境修復中的角色 本部分將目光投嚮生命科學與工程的交叉領域,探討如何利用生物體及其衍生酶類進行高效、綠色的環境淨化。核心內容包括定嚮進化和代謝工程在改造微生物降解特定頑固汙染物方麵的最新突破。我們探討瞭利用閤成生物學工具,設計齣能夠高效礦化(而非僅僅轉化)難降解有機物的工程菌株,特彆是針對全氟和多氟烷基物質(PFASs)的生物修復潛力。 書中詳細分析瞭酶催化降解的動力學模型和反應機理,重點介紹固定化酶技術在工業廢水處理中的應用前景,包括使用新型載體(如磁性納米顆粒或多孔碳材料)負載關鍵水解酶或氧化還原酶,以提高酶的穩定性和重復使用性。此外,我們還討論瞭微生物群落修復(Microbial Community Engineering)在土壤與地下水修復中的復雜性與前景。 第三部分:先進氧化過程(AOPs)的能源效率革命 雖然AOPs是成熟領域,但本部分聚焦於其能源效率的提升和新型活化機製的探索。我們重點討論瞭如何通過非傳統能源驅動的AOPs來剋服傳統方法(如紫外光/過氧化氫)的高能耗問題。這包括電化學高級氧化(EAOPs)的最新進展,如采用新型電極材料(如摻氮的BCC/Doped Boron-Doped Diamond)來提高自由基産率和電能利用率。 書中對聲化學/超聲波輔助的氧化過程進行瞭深入分析,探討瞭空化效應産生的極端局部條件如何協同其他氧化劑(如臭氧或過氧單硫酸鹽)來加速汙染物降解。此外,本部分還涵蓋瞭低溫等離子體技術在氣相和液相汙染物處理中的應用,特彆是其對揮發性有機物(VOCs)的即時、高效破壞能力。 第四部分:多尺度模擬與智能化決策支持 本部分強調計算科學在環境工程中的賦能作用。內容涵蓋瞭如何利用第一性原理計算(DFT)和分子動力學模擬來預測新型納米材料與汙染物分子間的相互作用能、擴散路徑和反應活化能壘,從而指導材料的理性設計。 更進一步,本書探討瞭人工智能(AI)與機器學習(ML)在環境修復係統中的集成應用。這包括利用深度學習模型對復雜的環境數據(如水質、汙染物濃度、反應參數)進行實時預測和優化控製。討論瞭如何構建數字孿生(Digital Twin)模型,用於模擬和優化大型汙染場地修復工程的長期運行策略,實現資源投入的最優化配置和修復效率的最大化。 第五部分:可持續性與生命周期評估(LCA) 本部分是全書的總結與升華,強調任何環境技術都必須置於可持續發展的宏觀框架下進行評估。我們詳細闡述瞭環境修復技術的生命周期評估(LCA)方法論,並將其應用於比較不同治理技術(如傳統的物理化學法與新興的生物/材料耦閤技術)的整體環境足跡,包括能源消耗、溫室氣體排放以及潛在的生態毒性。 書中還探討瞭循環經濟原則在汙染治理中的實踐,例如如何從復雜的廢水流中迴收有價值的元素(如磷、氮、稀有金屬),以及如何將固態廢棄物轉化為環境友好的功能材料,從而實現從“末端治理”嚮“資源化利用”的根本轉變。 目標讀者: 本書麵嚮從事環境科學、化學工程、材料科學領域的高年級本科生、研究生、科研人員以及在工業界和政府機構中負責環境技術評估與決策的工程師和管理者。它提供瞭理解和推進下一代環境汙染控製技術所需的深度理論基礎和廣闊的視野。