內容簡介
《海岸水域錶麵波動力學(波-流-海底相互作用)(英文)》內容簡介:Wave motion is one of the broadest scientific subjects in nature, especiallywater waves in the near-shore region which present more richness andcomplexity of variability with respect to deep-water waves. Dynamicsof Surface Waves in Coastal Waters Wave-Current-Bottom Interactionsdevelops the typical basic theories (e.g. mild-slope equation and shore-crested waves) and applications of water wave propagation with an emphasison wave-current-bottom interactions and Hamiltonian systems. In recenttimes, the interest in water wave propagation has accelerated because ofrapid developments in global coastal ocean engineering.
This book lays a new foundation for coastal ocean engineering and includesnumerous theories and concepts (generalized wave actions in particular),making it beneficial to physical oceanographers and engineers. The bookhas detailed illustrations and stimulating examples showing how the theoryworks, and up-to-date techniques, all of which make it accessible to a widevariety of readers, especially senior undergraduate and graduate studentsin fluid mechanics, coastal and ocean engineering, physical oceanographyand applied mathematics.
內頁插圖
目錄
1 Preliminaries
1.1 Water Wave Theories in Historical Perspective
1.1.1 The Mild-Slope Equations
1.1.2 The Boussinesq-Type Equations
1.2 The Governing Equations
1.3 Lagrangian Formulation
1.4 Hamiltonian Formulation
References
2 Weakly Nonlinear Water Waves Propagating over Uneven Bottoms
2.1 Modified Third-Order Evolution Equations of Liu and Dingemans
2.2 Fourth-Order Evolution Equations and Stability Analysis
2.3 Third-Order Evolution Equations for Wave-Current Interactions
References
3 Resonant Interactions Between Weakly Nonlinear Stokes Waves and Ambient Currents and Uneven Bottoms
3.1 Introduction
3.2 Governing Equations and WKBJ Perturbation Expansion
3.3 Subharmonic Resonance
3.4 Dynamical System
References
4 The Mild-Slope Equations
4.1 Introduction
4.2 Three-Dimensional Currents over Mildly Varying Topography
4.3 Two-Dimensional Currents over Rapidly Varying Topography
4.4 Three-Dimensional Currents over Rapidly Varying Topography
4.5 Two-Dimensional Currents over Generally Varying Topography
4.6 A Hierarchy for Two-Dimensional Currents over Generally Varying Topography
References
5 Linear Gravity Waves over Rigid, Porous Bottoms
5.1 Introduction
5.2 A Rapidly Varying Bottom
5.3 Generally Varying Bottom
References
6 Nonlinear Unified Equations over an Uneven Bottom
6.1 Introduction
6.2 Nonlinear Unified Equations
6.3 Explicit Special Cases
6.3.1 Generalized Nonlinear Shallow-Water Equations of Airy
6.3.2 Generalized Mild-Slope Equation
6.3.3 Stokes Wave Theory
6.3.4 Higher-Order Boussinesq-Type Equations
References
7 Generalized Mean-Flow Theory
7.1 Introduction
7.2 Governing Equations and Boundary Conditions
7.3 Averaged Equations of Motion
7.4 Generalized Wave Action Conservation Equation and Its Wave Actions
References
8 Hamiltonian Description of Stratified Wave-Current Interactions
8.1 Introduction
8.2 Two-Layer Wave-Current Interactions
8.3 n-Layer Pure Waves
8.4 n-Layer Wave-Current Interactions over Uneven Bottoms
References
9 Surface Capillary-Gravity Short-Crested Waves with a Current in Water of Finite Depth
9.1 Introduction
9.2 An Incomplete Match and Its Solution
9.3 Linear Capillary-Gravity Short-Crested Waves
9.3.1 System Formulation
9.3.2 Analytical Solutions and Kinematic and Dynamical Variables
9.3.3 Special Cases
9.4 Second-Order Capillary-Gravity Short-Crested Waves
9.5 Third-Order Gravity Short-Crested Waves
9.5.1 The System Equations and the Perturbation Method
9.5.2 Third-Order Solution
9.5.3 Special Cases
9.5.4 Short-Crested Wave Quantities
9.5.5 Short-Crested Wave Forces on Vertical Walls
9.6 Third-Order Pure Capillary-Gravity Short-Crested Waves
9.6.1 Formulation
9.6.2 Solution
9.6.3 Kinematical and Dynamical Variables
References
Appendices
A γ,μ and v in (2.1.4)
B ξ(3,1), φ3,1), A(3,2) ηj, τj, μj, λj and Vj in Chapter 2
C λ1 and λ2 in (2.3.44)
D μj in (3.3.22)
E I23, I33, I35,136 in Chapter 5
F Coefficients in (9.4.33) and (9.4.34)
G Coefficients in (9.5.136)-(9.5.138)
H Coefficients in (9.5.139) and (9.5.140)
Subject Index
精彩書摘
The third term can be called the bottom wave action, a positive compensation byincluding the effects of moving bottoms and describing a widespread dynamicprocess occurring on the nearshore bottoms (such as coastal evolution and sand-wave migrations). The fourth term may be considered as the dissipation waveaction, transmitting a full scale effect of the dissipation arising from the originin the viscosity of fluid, determining its nonnegligible dissipative function of thecomplete equation system, and probably having a widespread value of applica-tion. Finally the fifth term vanishes identically [2]. Therefore it can be seen thatthese four kinds of wave actions on the left of equation (7.4.2) reach mutuallya more general form of integration with complement, compatibility and distinc-tion. Bretherton and Garrett [2] had shown the equivalence of equation (7.4.1)for many other types of wave motion in fluid dynamics, so that, (7.4.2) can beregarded as a valuable extension of (7.4.1), giving rise to a generalized waveaction equation for the dissipative dynamical system in the nearshore region,which will play an important role in dealing with the process of real viscousflow.
前言/序言
Wave motion surrounds us——from the most secret, profound waves of quantummechanics to the grand waves of the ocean surface.
Ocean waves, or water waves, may be divided into deep- and shallow- water(coastal) waves. From an advance point of view, coastal waves are not studied asthoroughly as deep-water waves due to a complicated seabed topography on theformer but not on the latter. Therefore, in conjunction with the effects of ubiqui-tous ambient currents, wave-current-bottom interactions make up the most fun-damental, widespread dynamical mechanism in coastal waters manifesting itselfas refraction, diffraction, scattering, and resonant wave interactions involved inenergy exchanges.
Apparently, it is essential to obtain a full, clear explanation and descriptionof coastal waves for the development of broad offshore, coastal and harbor en-gineering, and also for having a better understanding of the evolutionary mech-anism of deep-water waves. In fact, a commanding view on long-term inves-tigating water waves is to wholly and uniformly treat and describe deep- andshallow-water waves, thus promoting the present rapid exploration and devel-opment of global oil and gas fields in deep waters of the oceans.
The aforementioned views, ideas, judgments, all that I have thought and doneover the last ten years, were compiled by me in this book. The book consists ofnine chapters and appendices from A to H, depicting the fundamental paradigmsof weakly nonlinear water waves.
海岸水域錶麵波動力學(波-流-海底相互作用) 圖書簡介 本書深入探討瞭海岸帶區域水動力過程的核心——錶麵波在復雜環境下的運動機製及其對近岸係統産生的影響。內容聚焦於波浪、洋流以及海底地形三者之間錯綜復雜的相互作用,旨在為海洋工程、海岸地貌演變、環境水流模擬等領域提供一個全麵、深入的理論與應用框架。 第一部分:理論基礎與背景 本書首先係統迴顧瞭經典波浪理論,從最基礎的綫性淺水波理論(Airy波)和深水波理論齣發,逐步過渡到非綫性效應顯著的區域。重點解析瞭 Stokes 二階波理論在描述波浪的非對稱性和波壓場變化中的關鍵作用,並介紹瞭高階非綫性波模型,如 cnoidal 波和 solitary 波,這些模型對於理解淺水區和破碎帶附近的波浪行為至關重要。 在理論基礎之上,本書詳盡闡述瞭波浪場的描述方法。這包括時域與頻域分析,傅裏葉變換在波浪譜估計中的應用,以及如何利用各種譜模型(如 JONSWAP 譜、Pierson-Moskowitz 譜)來錶徵真實海況下的波浪不規則性。同時,對波的傳播、反射、摺射和衍射現象進行瞭嚴格的數學推導和物理詮釋,特彆強調瞭這些過程在不規則海岸綫或近岸障礙物附近的重要性。 第二部分:波浪與洋流的耦閤作用 本部分是本書的核心內容之一,專門處理波浪運動與背景洋流(包括潮汐流、風生流和漂移流)之間的相互作用。波流耦閤不僅影響瞭波浪的有效波長和周期,更顯著地改變瞭波的能量傳輸路徑和破碎特性。 我們詳細分析瞭波浪對背景流場的反饋效應,即“波緻流”(Wave-Induced Currents)。這包括瞭斯托剋斯漂移(Stokes Drift)的剖麵分布、爬升流(Set-up)的形成機製,以及在波浪驅動下産生的二次環流結構,如爬升流和迴流。針對工程應用,本書給齣瞭計算波浪能通量和輻射應力(Radiation Stress)的精確方法,這是理解波浪驅動物質和能量輸運的關鍵。此外,還討論瞭波浪在斜坡上破碎時,如何通過動量通量變化來顯著影響近岸的平均流場結構,這對泥沙輸運的初始驅動力分析至關重要。 第三部分:海底地形與波浪相互作用 海岸水域的特徵性結構是復雜多變的海底地形。本書投入大量篇幅研究波浪與海底底部的相互作用,這是理解波浪能量耗散和近岸水深變化的根本。 1. 波浪破碎(Wave Breaking): 破碎是錶麵波能量最主要的耗散機製。本書係統分類並量化瞭不同類型的破碎過程,包括滑塌式(Surging)、捲麯式(Plunging)和潰散式(Spilling)破碎。基於經驗公式和基於動量的模型,對破碎帶的寬度、能量耗散率以及破碎後波浪的衰減規律進行瞭深入探討。 2. 波浪與底床的相互作用: 詳細分析瞭波浪引起的周期性底床剪切應力(Bottom Shear Stress)。通過對波浪邊界層理論的闡述,推導瞭床麵摩阻係數的計算方法,並將其與雷諾數和糙率參數關聯起來。這種相互作用是識彆和量化泥沙懸移和床麵起動能力的基礎。 3. 波浪摺射與繞射: 深入討論瞭波浪在非均勻水深(如海岬、海灣、人工構築物影響區)傳播時,因摺射和繞射導緻的波能重新分布。斯奈爾定律(Snell's Law)在等值深綫(Contours)上的應用,以及利用菲涅爾衍射理論處理障礙物後的波場重構,為工程防護設計提供瞭精確的工具。 第四部分:高級耦閤模型與數值方法 為瞭處理現實中波、流、底床相互作用的非綫性與復雜性,本書介紹瞭當前主流的數值模擬方法。 1. 淺水波模型: 詳細介紹瞭程綫方程(Parabolic Equation Method, PE)和菲涅爾積分方法在近岸波浪傳播模擬中的應用,特彆適用於大範圍的摺射和繞射模擬。 2. 動量方程模型: 重點講解瞭基於動量方程(Boussinesq方程組及其高階發展形式,如 mild slope 方程),如何耦閤波浪、洋流和海底地形效應,以更準確地捕捉非綫性淺水波場。 3. 能量耗散模型: 探討瞭如何將底部摩擦和波浪破碎的耗散項有效地嵌入到上述數值模型中,以實現全過程的能量平衡模擬。 結論與應用展望 本書內容緊密圍繞海岸水動力過程的相互作用展開,從基礎物理原理到先進的數值模擬技術,提供瞭一個綜閤性的研究平颱。其理論深度和工程實用性兼備,是海洋科學、水利工程、海洋工程和環境科學研究人員與專業工程師的重要參考資料。書中提供的分析框架和模型參數對於準確預測風暴潮、設計海岸防護結構、評估水下輸運過程以及理解海岸侵蝕與沉積規律具有不可替代的價值。