内容简介
《海岸水域表面波动力学(波-流-海底相互作用)(英文)》内容简介:Wave motion is one of the broadest scientific subjects in nature, especiallywater waves in the near-shore region which present more richness andcomplexity of variability with respect to deep-water waves. Dynamicsof Surface Waves in Coastal Waters Wave-Current-Bottom Interactionsdevelops the typical basic theories (e.g. mild-slope equation and shore-crested waves) and applications of water wave propagation with an emphasison wave-current-bottom interactions and Hamiltonian systems. In recenttimes, the interest in water wave propagation has accelerated because ofrapid developments in global coastal ocean engineering.
This book lays a new foundation for coastal ocean engineering and includesnumerous theories and concepts (generalized wave actions in particular),making it beneficial to physical oceanographers and engineers. The bookhas detailed illustrations and stimulating examples showing how the theoryworks, and up-to-date techniques, all of which make it accessible to a widevariety of readers, especially senior undergraduate and graduate studentsin fluid mechanics, coastal and ocean engineering, physical oceanographyand applied mathematics.
内页插图
目录
1 Preliminaries
1.1 Water Wave Theories in Historical Perspective
1.1.1 The Mild-Slope Equations
1.1.2 The Boussinesq-Type Equations
1.2 The Governing Equations
1.3 Lagrangian Formulation
1.4 Hamiltonian Formulation
References
2 Weakly Nonlinear Water Waves Propagating over Uneven Bottoms
2.1 Modified Third-Order Evolution Equations of Liu and Dingemans
2.2 Fourth-Order Evolution Equations and Stability Analysis
2.3 Third-Order Evolution Equations for Wave-Current Interactions
References
3 Resonant Interactions Between Weakly Nonlinear Stokes Waves and Ambient Currents and Uneven Bottoms
3.1 Introduction
3.2 Governing Equations and WKBJ Perturbation Expansion
3.3 Subharmonic Resonance
3.4 Dynamical System
References
4 The Mild-Slope Equations
4.1 Introduction
4.2 Three-Dimensional Currents over Mildly Varying Topography
4.3 Two-Dimensional Currents over Rapidly Varying Topography
4.4 Three-Dimensional Currents over Rapidly Varying Topography
4.5 Two-Dimensional Currents over Generally Varying Topography
4.6 A Hierarchy for Two-Dimensional Currents over Generally Varying Topography
References
5 Linear Gravity Waves over Rigid, Porous Bottoms
5.1 Introduction
5.2 A Rapidly Varying Bottom
5.3 Generally Varying Bottom
References
6 Nonlinear Unified Equations over an Uneven Bottom
6.1 Introduction
6.2 Nonlinear Unified Equations
6.3 Explicit Special Cases
6.3.1 Generalized Nonlinear Shallow-Water Equations of Airy
6.3.2 Generalized Mild-Slope Equation
6.3.3 Stokes Wave Theory
6.3.4 Higher-Order Boussinesq-Type Equations
References
7 Generalized Mean-Flow Theory
7.1 Introduction
7.2 Governing Equations and Boundary Conditions
7.3 Averaged Equations of Motion
7.4 Generalized Wave Action Conservation Equation and Its Wave Actions
References
8 Hamiltonian Description of Stratified Wave-Current Interactions
8.1 Introduction
8.2 Two-Layer Wave-Current Interactions
8.3 n-Layer Pure Waves
8.4 n-Layer Wave-Current Interactions over Uneven Bottoms
References
9 Surface Capillary-Gravity Short-Crested Waves with a Current in Water of Finite Depth
9.1 Introduction
9.2 An Incomplete Match and Its Solution
9.3 Linear Capillary-Gravity Short-Crested Waves
9.3.1 System Formulation
9.3.2 Analytical Solutions and Kinematic and Dynamical Variables
9.3.3 Special Cases
9.4 Second-Order Capillary-Gravity Short-Crested Waves
9.5 Third-Order Gravity Short-Crested Waves
9.5.1 The System Equations and the Perturbation Method
9.5.2 Third-Order Solution
9.5.3 Special Cases
9.5.4 Short-Crested Wave Quantities
9.5.5 Short-Crested Wave Forces on Vertical Walls
9.6 Third-Order Pure Capillary-Gravity Short-Crested Waves
9.6.1 Formulation
9.6.2 Solution
9.6.3 Kinematical and Dynamical Variables
References
Appendices
A γ,μ and v in (2.1.4)
B ξ(3,1), φ3,1), A(3,2) ηj, τj, μj, λj and Vj in Chapter 2
C λ1 and λ2 in (2.3.44)
D μj in (3.3.22)
E I23, I33, I35,136 in Chapter 5
F Coefficients in (9.4.33) and (9.4.34)
G Coefficients in (9.5.136)-(9.5.138)
H Coefficients in (9.5.139) and (9.5.140)
Subject Index
精彩书摘
The third term can be called the bottom wave action, a positive compensation byincluding the effects of moving bottoms and describing a widespread dynamicprocess occurring on the nearshore bottoms (such as coastal evolution and sand-wave migrations). The fourth term may be considered as the dissipation waveaction, transmitting a full scale effect of the dissipation arising from the originin the viscosity of fluid, determining its nonnegligible dissipative function of thecomplete equation system, and probably having a widespread value of applica-tion. Finally the fifth term vanishes identically [2]. Therefore it can be seen thatthese four kinds of wave actions on the left of equation (7.4.2) reach mutuallya more general form of integration with complement, compatibility and distinc-tion. Bretherton and Garrett [2] had shown the equivalence of equation (7.4.1)for many other types of wave motion in fluid dynamics, so that, (7.4.2) can beregarded as a valuable extension of (7.4.1), giving rise to a generalized waveaction equation for the dissipative dynamical system in the nearshore region,which will play an important role in dealing with the process of real viscousflow.
前言/序言
Wave motion surrounds us——from the most secret, profound waves of quantummechanics to the grand waves of the ocean surface.
Ocean waves, or water waves, may be divided into deep- and shallow- water(coastal) waves. From an advance point of view, coastal waves are not studied asthoroughly as deep-water waves due to a complicated seabed topography on theformer but not on the latter. Therefore, in conjunction with the effects of ubiqui-tous ambient currents, wave-current-bottom interactions make up the most fun-damental, widespread dynamical mechanism in coastal waters manifesting itselfas refraction, diffraction, scattering, and resonant wave interactions involved inenergy exchanges.
Apparently, it is essential to obtain a full, clear explanation and descriptionof coastal waves for the development of broad offshore, coastal and harbor en-gineering, and also for having a better understanding of the evolutionary mech-anism of deep-water waves. In fact, a commanding view on long-term inves-tigating water waves is to wholly and uniformly treat and describe deep- andshallow-water waves, thus promoting the present rapid exploration and devel-opment of global oil and gas fields in deep waters of the oceans.
The aforementioned views, ideas, judgments, all that I have thought and doneover the last ten years, were compiled by me in this book. The book consists ofnine chapters and appendices from A to H, depicting the fundamental paradigmsof weakly nonlinear water waves.
海岸水域表面波动力学(波-流-海底相互作用) 图书简介 本书深入探讨了海岸带区域水动力过程的核心——表面波在复杂环境下的运动机制及其对近岸系统产生的影响。内容聚焦于波浪、洋流以及海底地形三者之间错综复杂的相互作用,旨在为海洋工程、海岸地貌演变、环境水流模拟等领域提供一个全面、深入的理论与应用框架。 第一部分:理论基础与背景 本书首先系统回顾了经典波浪理论,从最基础的线性浅水波理论(Airy波)和深水波理论出发,逐步过渡到非线性效应显著的区域。重点解析了 Stokes 二阶波理论在描述波浪的非对称性和波压场变化中的关键作用,并介绍了高阶非线性波模型,如 cnoidal 波和 solitary 波,这些模型对于理解浅水区和破碎带附近的波浪行为至关重要。 在理论基础之上,本书详尽阐述了波浪场的描述方法。这包括时域与频域分析,傅里叶变换在波浪谱估计中的应用,以及如何利用各种谱模型(如 JONSWAP 谱、Pierson-Moskowitz 谱)来表征真实海况下的波浪不规则性。同时,对波的传播、反射、折射和衍射现象进行了严格的数学推导和物理诠释,特别强调了这些过程在不规则海岸线或近岸障碍物附近的重要性。 第二部分:波浪与洋流的耦合作用 本部分是本书的核心内容之一,专门处理波浪运动与背景洋流(包括潮汐流、风生流和漂移流)之间的相互作用。波流耦合不仅影响了波浪的有效波长和周期,更显著地改变了波的能量传输路径和破碎特性。 我们详细分析了波浪对背景流场的反馈效应,即“波致流”(Wave-Induced Currents)。这包括了斯托克斯漂移(Stokes Drift)的剖面分布、爬升流(Set-up)的形成机制,以及在波浪驱动下产生的二次环流结构,如爬升流和回流。针对工程应用,本书给出了计算波浪能通量和辐射应力(Radiation Stress)的精确方法,这是理解波浪驱动物质和能量输运的关键。此外,还讨论了波浪在斜坡上破碎时,如何通过动量通量变化来显著影响近岸的平均流场结构,这对泥沙输运的初始驱动力分析至关重要。 第三部分:海底地形与波浪相互作用 海岸水域的特征性结构是复杂多变的海底地形。本书投入大量篇幅研究波浪与海底底部的相互作用,这是理解波浪能量耗散和近岸水深变化的根本。 1. 波浪破碎(Wave Breaking): 破碎是表面波能量最主要的耗散机制。本书系统分类并量化了不同类型的破碎过程,包括滑塌式(Surging)、卷曲式(Plunging)和溃散式(Spilling)破碎。基于经验公式和基于动量的模型,对破碎带的宽度、能量耗散率以及破碎后波浪的衰减规律进行了深入探讨。 2. 波浪与底床的相互作用: 详细分析了波浪引起的周期性底床剪切应力(Bottom Shear Stress)。通过对波浪边界层理论的阐述,推导了床面摩阻系数的计算方法,并将其与雷诺数和糙率参数关联起来。这种相互作用是识别和量化泥沙悬移和床面起动能力的基础。 3. 波浪折射与绕射: 深入讨论了波浪在非均匀水深(如海岬、海湾、人工构筑物影响区)传播时,因折射和绕射导致的波能重新分布。斯奈尔定律(Snell's Law)在等值深线(Contours)上的应用,以及利用菲涅尔衍射理论处理障碍物后的波场重构,为工程防护设计提供了精确的工具。 第四部分:高级耦合模型与数值方法 为了处理现实中波、流、底床相互作用的非线性与复杂性,本书介绍了当前主流的数值模拟方法。 1. 浅水波模型: 详细介绍了程线方程(Parabolic Equation Method, PE)和菲涅尔积分方法在近岸波浪传播模拟中的应用,特别适用于大范围的折射和绕射模拟。 2. 动量方程模型: 重点讲解了基于动量方程(Boussinesq方程组及其高阶发展形式,如 mild slope 方程),如何耦合波浪、洋流和海底地形效应,以更准确地捕捉非线性浅水波场。 3. 能量耗散模型: 探讨了如何将底部摩擦和波浪破碎的耗散项有效地嵌入到上述数值模型中,以实现全过程的能量平衡模拟。 结论与应用展望 本书内容紧密围绕海岸水动力过程的相互作用展开,从基础物理原理到先进的数值模拟技术,提供了一个综合性的研究平台。其理论深度和工程实用性兼备,是海洋科学、水利工程、海洋工程和环境科学研究人员与专业工程师的重要参考资料。书中提供的分析框架和模型参数对于准确预测风暴潮、设计海岸防护结构、评估水下输运过程以及理解海岸侵蚀与沉积规律具有不可替代的价值。