理论原子物理学(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)]

理论原子物理学(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
[德] 弗里德里希 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-14

类似图书 点击查看全场最低价

图书介绍

出版社: 世界图书出版公司
ISBN:9787510005688
版次:1
商品编码:10184612
包装:平装
外文名称:Theoretical Atomic Physics(Third Edition)
开本:24开
出版时间:2010-04-01
用纸:胶版纸
页数:506
正文语种:英语


相关图书





图书描述

内容简介

  《理论原子物理学(第3版)》主要讲解量子力学基本原理在现代原子物理学中的应用。在新版中,作者增添了理论原子物理领域的最新进展,介绍了目前大家非常感兴趣的议题,包括半经典周期轨道理论、外场中原子的标度性质、双电子原子的经典和量子动力学以及原子气体的玻色-爱因斯坦凝聚等。《理论原子物理学(第3版)》还简明介绍了原子光学中若干前沿研究,这是目前和未来超冷原子实验必不可少的知识。作者强调基本理论的解释,使读者能够理解标准理论结构里蕴藏的丰富物理思想,从而可以独立进行科学研究工作。此外,形式各异的习题及其完整的解答过程为《理论原子物理学(第3版)》添色不少。《理论原子物理学(第3版)》被选为德国Springer出版社的“高等物理学教材”,这是一套非常优秀的教材。目次:量子力学概要;原子和离子;原子光谱;简单反应;专题;附录:特殊数学函数;习题答案;索引。
  原子物理是物理学中最具有活力的前沿领域之一,它在推动人们对自然界的认知方面发挥了重要作用。在过去几年里,该领域及相关领域因原子激光冷却(1997年)、玻色-爱因斯坦凝聚的实现(2001年)以及光的量子相干性与精密光谱学的发展(2005年)三次摘取诺贝尔物理学奖桂冠。读者对象:理论物理、原子分子物理和物理化学等专业的高年级本科生、研究生和相关领域的科研人员。

内页插图

目录

1 Review of Quantum Mechanics
1.1 Wave Functions and Equations of Motion
1.1.1 States and Wave Functions
1.1.2 Linear Operators and Observables
1.1.3 The Harniltonian and Equations of Motion
1.2 Symmetries
1.2.1 Constants of Motion and Symmetries
1.2.2 The Radial SchrSdinger Equation
1.2.3 Example: The Radially Symmetric Harmonic Oscillator
1.3 Bound States and Unbound States
1.3.1 Bound States
1.3.2 Unbound States
1.3.3 Examples
1.3.4 Normalization of Unbound States
1.4 Processes Involving Unbound States
1.4.1 Wave Packets
1.4.2 Transmission and Reflection
1.4.3 Time Delays and Space Shifts
1.5 Resonances and Channels
1.5.1 Channels
1.5.2 Feshbach Resonances
1.5.3 Potential Resonances
1.6 Methods of Approximation
1.6.1 Time-independent Perturbation Theory
1.6.2 Ritzs Variational Method
1.6.3 Semiclassical Approximation
1.6.4 Inverse Power-Law Potentials
1.7 Angular Momentum and Spin
1.7.1 Addition of Angular Momenta
1.7.2 Spin
1.7.3 Spin-Orbit Coupling
Problems
References

2 Atoms and Ions
2.1 One-Electron Systems
2.1.1 The Hydrogen Atom
2.1.2 Hydrogenic Ions
2.1.3 The Dirac Equation
2.1.4 Relativistic Corrections to the Schrodinger Equation
2.2 Many-Electron Systems
2.2.1 The Hamiltonian
2.2.2 Pauli Principle and Slater Determinants
2.2.3 The Shell Structure of Atoms
2.2.4 Classification of Atomic Levels
2.3 The N-Electron Problem
2.3.1 The Hartree-Fock Method
2.3.2 Correlations and Configuration Interaction
2.3.3 The Thomas-Fermi Model
2.3.4 Density Functional Methods
2.4 Electromagnetic Transitions
2.4.1 Transitions in General, "Golden Rule"
2.4.2 The Electromagnetic Field
2.4.3 Interaction Between Atom and Field
2.4.4 Emission and Absorption of Photons
2.4.5 Selection Rules
2.4.6 Oscillator Strengths, Sum Rules
Problems
References

3 Atomic Spectra
3.1 Long-Ranged and Shorter-Ranged Potentials
3.1.1 Very-Long-Ranged Potentials
3.1.2 Shorter-Ranged Potentials
3.1.3 The Transition From a Finite Number to Infinitely Many Bound States, Inverse-Square Tails
3.1.4 Example: Truncated Dipole Series in the H- Ion
3.2 One Electron in a Modified Coulomb Potential
3.2.1 Rydberg Series, Quantum Defects
3.2.2 Seatons Theorem, One-Channel Quantum Defect. Theory
3.2.3 Photoabsorption und Photoionization
3.3 Coupled Channels
3.3.1 Close-Coupling Equations
3.3.2 Autoionizing Resonances
3.3.3 Configuration Interaction, Interference of Resonances
3.3.4 Perturbed Rydberg Series
3.4 Multichannel Quantum Defect Theory (MQDT)
3.4.1 Two Coupled Coulomb Channels
3.4.2 The Lu-Fano Plot
3.4.3 More Than Two Channels
3.5 Atoms in External Fields
3.5.1 Atoms in a Static, Homogeneous Electric Field
3.5.2 Atoms in a Static, Homogeneous Magnetic Field
3.5.3 Atoms in an Oscillating Electric Field
Problems
References

4 Simple Reactions
4.1 Elastic Scattering
4.1.1 Elastic Scattering by a Shorter-Ranged Potential
411.2 Mean Scattering Lengths
4.1.3 Near-Threshold Feshbach Resonances
4.1.4 Semiclassical Description of Elastic Scattering
4.1.5 Elastic Scattering by a Pure Coulomb Potential
4.1.6 Elastic Scattering by a Modified Coulomb Potential, DWBA
4.1.7 Feshbach Projection. Optical Potential
4.2 Spin and Polarization
4.2.1 Consequences of Spin-Orbit Coupling
4.2.2 Application to General Pure Spin States
4.2.3 Application to Mixed Spin States
4.3 Inelastic Scattering
4.3.1 General Formulation
4.3.2 Coupled Radial Equations
4.3.3 Threshold Effects
4.3.4 An Example
4.4 Exit Channels with Two Unbound Electrons
4.4.1 General Formulation
4.4.2 Application to Electrons
4.4.3 Example
4.4.4 Threshold Behaviour of Ionization Cross Sections
Problems
References

5 Special Topics
5.1 Multiphoton Absorption
5.1.1 Experimental Observations on Multiphoton Ionization
5.1.2 Calculating Ionization Probabilities via Volkov States
5.1.3 Calculating Ionization Probabilities via Floquet States
5.2 Classical Trajectories and Wave Packets
5.2.1 Phase Space Densities
5.2.2 Coherent States
5.2.3 Coherent Wave Packets in Real Systems
5.3 Regular and Chaotic Dynamics in Atoms
5.3.1 Chaos in Classical Mechanics
5.3.2 Traces of Chaos in Quantum Mechanics
5.3.3 Semiclassical Periodic Orbit Theory
5.3.4 Scaling Properties for Atoms in External Fields
5.3.5 Examples
5.4 Bose-Einstein Condensation in Atomic Gases
5.4.1 Quantum Statistics of Fermions and Bosons
5.4.2 The Effect of Interactions in Bose-Einstein Condensates
5.4.3 Realization of Bose-Einstein Condensation in Atomic Gases
5.5 Some Aspects of Atom Optics
5.5.1 Atom-Wall Interactions
5.5.2 Evanescent-Wave Mirrors
5.5.3 Quantum Reflection
Problems

References
A Special Mathematical Functions
A.1 Legendre Polynomials, Spherical Harmonics
A.2 Laguerre Polynomials
A.3 Gamma Function
A.4 Bessel Functions
A.5 Whittaker Functions, Coulomb Functions
References
Solutions to the Problems
References
Index

前言/序言

  The one and a half decades since the publication of the first edition of Theo-retical Atomic Physics have seen a continuation of remarkable and dramatic experimental breakthroughs. With the help of ultrashort laser pulses, special states of atoms and molecules can now be prepared and their time-evolution studied on time scales shorter than femtoseconds. Trapped atoms and mole-cules can be cooled to temperatures on the order of a few nano-Kelvin and light fields can be used to guide and manipulate atoms, for example in optical lattices formed as standing waves by counterpropagating laser beams. After the first production of Bose-Einstein condensates of ultracold atomic gases in 1995, degenerate quantum gases of ultracold atoms and molecules are now prepared and studied routinely in many laboratories around the world. Such progress in atomic physics has been well received and appreciated in the gen-eral academic community and was rewarded with two recent Nobel Prizes for physics. The 1997 prize was given to Steven Chu, Claude Cohen-Tannoudji and William Phillips for their work on cooling atoms, and only four years later Eric Cornell, Wolfgang Ketterle and Carl Wieman received the 2001 prize for the realization of the Bose-Einstein condensates mentioned above.
  The prominence of modern experimental atomic physics establishes fur-ther need for a deeper understanding of the underlying theory. The continuing growth in quality and quantity of available computer power has substantially increased the effectivity of large-scale numerical studies in all fields, including atomic physics. This makes it possible to obtain some standard results such as the properties of low-lying states in many-electron atoms with good accuracy using generally applicable programme packages. However, largely due to the dominant influence of long-ranged Coulomb forces, atomic systems are rather special. They can reveal a wide range of interesting phenomena in very differ-ent regimes——from near-classical states of highly excited atoms, where effects of nonlinearity and chaos are important, to the extreme quantum regime of ultracold atoms, where counterintuitive nonclassical effects can be observed. The theoretical solution of typical problems in modern atomic physics requires proficiency in the practical application of quantum mechanics at an advanced level, and a good understanding of the links to classical mechanics is almost always helpful. The aim of Theoretical Atomic Physics remains to provide the reader with a solid foundation of this sort of advanced quantum mechanics.
  In preparing the third edition I have again tried to do justice to the rapid development of the field. I have included references to important new work whenever this seemed appropriate and easy to do. Chapter I now includes a section on processes involving (wave packets of) continuum states and also an expanded treatment of the semiclassica 理论原子物理学(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] 下载 mobi epub pdf txt 电子书 格式

理论原子物理学(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

理论原子物理学(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] 下载 mobi pdf epub txt 电子书 格式 2024

理论原子物理学(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

这本书我觉得挺好的

评分

没看过,不知道写得怎么样

评分

作为理论参考书很实用,从基础开始深入。

评分

本来给本科生看,但是太难了。

评分

作为理论参考书很实用,从基础开始深入。

评分

书是正版,价格合理,不错。

评分

包装很好

评分

据说是本很全面的专业书。

评分

原子物理是物理学中最具有活力的前沿领域之一,它在推动人们对自然界的认知方面发挥了重要作用。在过去几年里,该领域及相关领域因原子激光冷却(1997年)、玻色-爱因斯坦凝聚的实现(2001年)以及光的量子相干性与精密光谱学的发展(2005年)三次摘取诺贝尔物理学奖桂冠。读者对象:理论物理、原子分子物理和物理化学等专业的高年级本科生、研究生和相关领域的科研人员。

类似图书 点击查看全场最低价

理论原子物理学(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.teaonline.club All Rights Reserved. 图书大百科 版权所有