理論原子物理學(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)]

理論原子物理學(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] 下載 mobi epub pdf 電子書 2024


簡體網頁||繁體網頁
[德] 弗裏德裏希 著



點擊這裡下載
    

想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

發表於2024-12-29

類似圖書 點擊查看全場最低價


圖書介紹

齣版社: 世界圖書齣版公司
ISBN:9787510005688
版次:1
商品編碼:10184612
包裝:平裝
外文名稱:Theoretical Atomic Physics(Third Edition)
開本:24開
齣版時間:2010-04-01
用紙:膠版紙
頁數:506
正文語種:英語


相關圖書





圖書描述

內容簡介

  《理論原子物理學(第3版)》主要講解量子力學基本原理在現代原子物理學中的應用。在新版中,作者增添瞭理論原子物理領域的最新進展,介紹瞭目前大傢非常感興趣的議題,包括半經典周期軌道理論、外場中原子的標度性質、雙電子原子的經典和量子動力學以及原子氣體的玻色-愛因斯坦凝聚等。《理論原子物理學(第3版)》還簡明介紹瞭原子光學中若乾前沿研究,這是目前和未來超冷原子實驗必不可少的知識。作者強調基本理論的解釋,使讀者能夠理解標準理論結構裏蘊藏的豐富物理思想,從而可以獨立進行科學研究工作。此外,形式各異的習題及其完整的解答過程為《理論原子物理學(第3版)》添色不少。《理論原子物理學(第3版)》被選為德國Springer齣版社的“高等物理學教材”,這是一套非常優秀的教材。目次:量子力學概要;原子和離子;原子光譜;簡單反應;專題;附錄:特殊數學函數;習題答案;索引。
  原子物理是物理學中最具有活力的前沿領域之一,它在推動人們對自然界的認知方麵發揮瞭重要作用。在過去幾年裏,該領域及相關領域因原子激光冷卻(1997年)、玻色-愛因斯坦凝聚的實現(2001年)以及光的量子相乾性與精密光譜學的發展(2005年)三次摘取諾貝爾物理學奬桂冠。讀者對象:理論物理、原子分子物理和物理化學等專業的高年級本科生、研究生和相關領域的科研人員。

內頁插圖

目錄

1 Review of Quantum Mechanics
1.1 Wave Functions and Equations of Motion
1.1.1 States and Wave Functions
1.1.2 Linear Operators and Observables
1.1.3 The Harniltonian and Equations of Motion
1.2 Symmetries
1.2.1 Constants of Motion and Symmetries
1.2.2 The Radial SchrSdinger Equation
1.2.3 Example: The Radially Symmetric Harmonic Oscillator
1.3 Bound States and Unbound States
1.3.1 Bound States
1.3.2 Unbound States
1.3.3 Examples
1.3.4 Normalization of Unbound States
1.4 Processes Involving Unbound States
1.4.1 Wave Packets
1.4.2 Transmission and Reflection
1.4.3 Time Delays and Space Shifts
1.5 Resonances and Channels
1.5.1 Channels
1.5.2 Feshbach Resonances
1.5.3 Potential Resonances
1.6 Methods of Approximation
1.6.1 Time-independent Perturbation Theory
1.6.2 Ritzs Variational Method
1.6.3 Semiclassical Approximation
1.6.4 Inverse Power-Law Potentials
1.7 Angular Momentum and Spin
1.7.1 Addition of Angular Momenta
1.7.2 Spin
1.7.3 Spin-Orbit Coupling
Problems
References

2 Atoms and Ions
2.1 One-Electron Systems
2.1.1 The Hydrogen Atom
2.1.2 Hydrogenic Ions
2.1.3 The Dirac Equation
2.1.4 Relativistic Corrections to the Schrodinger Equation
2.2 Many-Electron Systems
2.2.1 The Hamiltonian
2.2.2 Pauli Principle and Slater Determinants
2.2.3 The Shell Structure of Atoms
2.2.4 Classification of Atomic Levels
2.3 The N-Electron Problem
2.3.1 The Hartree-Fock Method
2.3.2 Correlations and Configuration Interaction
2.3.3 The Thomas-Fermi Model
2.3.4 Density Functional Methods
2.4 Electromagnetic Transitions
2.4.1 Transitions in General, "Golden Rule"
2.4.2 The Electromagnetic Field
2.4.3 Interaction Between Atom and Field
2.4.4 Emission and Absorption of Photons
2.4.5 Selection Rules
2.4.6 Oscillator Strengths, Sum Rules
Problems
References

3 Atomic Spectra
3.1 Long-Ranged and Shorter-Ranged Potentials
3.1.1 Very-Long-Ranged Potentials
3.1.2 Shorter-Ranged Potentials
3.1.3 The Transition From a Finite Number to Infinitely Many Bound States, Inverse-Square Tails
3.1.4 Example: Truncated Dipole Series in the H- Ion
3.2 One Electron in a Modified Coulomb Potential
3.2.1 Rydberg Series, Quantum Defects
3.2.2 Seatons Theorem, One-Channel Quantum Defect. Theory
3.2.3 Photoabsorption und Photoionization
3.3 Coupled Channels
3.3.1 Close-Coupling Equations
3.3.2 Autoionizing Resonances
3.3.3 Configuration Interaction, Interference of Resonances
3.3.4 Perturbed Rydberg Series
3.4 Multichannel Quantum Defect Theory (MQDT)
3.4.1 Two Coupled Coulomb Channels
3.4.2 The Lu-Fano Plot
3.4.3 More Than Two Channels
3.5 Atoms in External Fields
3.5.1 Atoms in a Static, Homogeneous Electric Field
3.5.2 Atoms in a Static, Homogeneous Magnetic Field
3.5.3 Atoms in an Oscillating Electric Field
Problems
References

4 Simple Reactions
4.1 Elastic Scattering
4.1.1 Elastic Scattering by a Shorter-Ranged Potential
411.2 Mean Scattering Lengths
4.1.3 Near-Threshold Feshbach Resonances
4.1.4 Semiclassical Description of Elastic Scattering
4.1.5 Elastic Scattering by a Pure Coulomb Potential
4.1.6 Elastic Scattering by a Modified Coulomb Potential, DWBA
4.1.7 Feshbach Projection. Optical Potential
4.2 Spin and Polarization
4.2.1 Consequences of Spin-Orbit Coupling
4.2.2 Application to General Pure Spin States
4.2.3 Application to Mixed Spin States
4.3 Inelastic Scattering
4.3.1 General Formulation
4.3.2 Coupled Radial Equations
4.3.3 Threshold Effects
4.3.4 An Example
4.4 Exit Channels with Two Unbound Electrons
4.4.1 General Formulation
4.4.2 Application to Electrons
4.4.3 Example
4.4.4 Threshold Behaviour of Ionization Cross Sections
Problems
References

5 Special Topics
5.1 Multiphoton Absorption
5.1.1 Experimental Observations on Multiphoton Ionization
5.1.2 Calculating Ionization Probabilities via Volkov States
5.1.3 Calculating Ionization Probabilities via Floquet States
5.2 Classical Trajectories and Wave Packets
5.2.1 Phase Space Densities
5.2.2 Coherent States
5.2.3 Coherent Wave Packets in Real Systems
5.3 Regular and Chaotic Dynamics in Atoms
5.3.1 Chaos in Classical Mechanics
5.3.2 Traces of Chaos in Quantum Mechanics
5.3.3 Semiclassical Periodic Orbit Theory
5.3.4 Scaling Properties for Atoms in External Fields
5.3.5 Examples
5.4 Bose-Einstein Condensation in Atomic Gases
5.4.1 Quantum Statistics of Fermions and Bosons
5.4.2 The Effect of Interactions in Bose-Einstein Condensates
5.4.3 Realization of Bose-Einstein Condensation in Atomic Gases
5.5 Some Aspects of Atom Optics
5.5.1 Atom-Wall Interactions
5.5.2 Evanescent-Wave Mirrors
5.5.3 Quantum Reflection
Problems

References
A Special Mathematical Functions
A.1 Legendre Polynomials, Spherical Harmonics
A.2 Laguerre Polynomials
A.3 Gamma Function
A.4 Bessel Functions
A.5 Whittaker Functions, Coulomb Functions
References
Solutions to the Problems
References
Index

前言/序言

  The one and a half decades since the publication of the first edition of Theo-retical Atomic Physics have seen a continuation of remarkable and dramatic experimental breakthroughs. With the help of ultrashort laser pulses, special states of atoms and molecules can now be prepared and their time-evolution studied on time scales shorter than femtoseconds. Trapped atoms and mole-cules can be cooled to temperatures on the order of a few nano-Kelvin and light fields can be used to guide and manipulate atoms, for example in optical lattices formed as standing waves by counterpropagating laser beams. After the first production of Bose-Einstein condensates of ultracold atomic gases in 1995, degenerate quantum gases of ultracold atoms and molecules are now prepared and studied routinely in many laboratories around the world. Such progress in atomic physics has been well received and appreciated in the gen-eral academic community and was rewarded with two recent Nobel Prizes for physics. The 1997 prize was given to Steven Chu, Claude Cohen-Tannoudji and William Phillips for their work on cooling atoms, and only four years later Eric Cornell, Wolfgang Ketterle and Carl Wieman received the 2001 prize for the realization of the Bose-Einstein condensates mentioned above.
  The prominence of modern experimental atomic physics establishes fur-ther need for a deeper understanding of the underlying theory. The continuing growth in quality and quantity of available computer power has substantially increased the effectivity of large-scale numerical studies in all fields, including atomic physics. This makes it possible to obtain some standard results such as the properties of low-lying states in many-electron atoms with good accuracy using generally applicable programme packages. However, largely due to the dominant influence of long-ranged Coulomb forces, atomic systems are rather special. They can reveal a wide range of interesting phenomena in very differ-ent regimes——from near-classical states of highly excited atoms, where effects of nonlinearity and chaos are important, to the extreme quantum regime of ultracold atoms, where counterintuitive nonclassical effects can be observed. The theoretical solution of typical problems in modern atomic physics requires proficiency in the practical application of quantum mechanics at an advanced level, and a good understanding of the links to classical mechanics is almost always helpful. The aim of Theoretical Atomic Physics remains to provide the reader with a solid foundation of this sort of advanced quantum mechanics.
  In preparing the third edition I have again tried to do justice to the rapid development of the field. I have included references to important new work whenever this seemed appropriate and easy to do. Chapter I now includes a section on processes involving (wave packets of) continuum states and also an expanded treatment of the semiclassica 理論原子物理學(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] 下載 mobi epub pdf txt 電子書 格式

理論原子物理學(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] mobi 下載 pdf 下載 pub 下載 txt 電子書 下載 2024

理論原子物理學(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] 下載 mobi pdf epub txt 電子書 格式 2024

理論原子物理學(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] 下載 mobi epub pdf 電子書
想要找書就要到 圖書大百科
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

用戶評價

評分

本來給本科生看,但是太難瞭。

評分

主要講解量子力學基本原理在現代原子物理學中的應用。在新版中,作者增添瞭理論原子物理領域的最新進展,介紹瞭目前大傢非常感興趣的議題,包括半經典周期軌道理論、外場中原子的標度性質、雙電子原子的經典和量子動力學以及原子氣體的玻色-愛因斯坦凝聚等。《理論原子物理學(第3版)》還簡明介紹瞭原子光學中若乾前沿研究,這是目前和未來超冷原子實驗必不可少的知識。作者強調基本理論的解釋,使讀者能夠理解標準理論結構裏蘊藏的豐富物理思想,從而可以獨立進行科學研究工作。此外,形式各異的習題及其完整的解答過程為《理論原子物理學(第3版)》添色不少。《理論原子物理學(第3版)》被選為德國Springer齣版社的“高等物理學教材”,這是一套非常優秀的教材。目次:量子力學概要;原子和離子;原子光譜;簡單反應;專題;附錄:特殊數學函數;習題答案;索引。

評分

發貨快,服務也好,非常好,滿意。

評分

這本書寫的好!用的挺棒噠!

評分

原子分子物理專業的,誰說的?看一下。我有幫助吧。

評分

書是正版,價格閤理,不錯。

評分

送貨非常迅速,喜歡京東購物!

評分

喜歡看原版書,原汁原味。

評分

原子物理是物理學中最具有活力的前沿領域之一,它在推動人們對自然界的認知方麵發揮瞭重要作用。在過去幾年裏,該領域及相關領域因原子激光冷卻(1997年)、玻色-愛因斯坦凝聚的實現(2001年)以及光的量子相乾性與精密光譜學的發展(2005年)三次摘取諾貝爾物理學奬桂冠。讀者對象:理論物理、原子分子物理和物理化學等專業的高年級本科生、研究生和相關領域的科研人員。

類似圖書 點擊查看全場最低價

理論原子物理學(第3版)(英文版) [Theoretical Atomic Physics(Third Edition)] mobi epub pdf txt 電子書 格式下載 2024


分享鏈接




相關圖書


本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

友情鏈接

© 2024 book.teaonline.club All Rights Reserved. 圖書大百科 版權所有