高性能Spark(影印版) [High Performance Spark]

高性能Spark(影印版) [High Performance Spark] 下载 mobi epub pdf 电子书 2024


简体网页||繁体网页
Holden,Karau,Rachel,Warren 著



点击这里下载
    


想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

发表于2024-11-22

类似图书 点击查看全场最低价

图书介绍

出版社: 东南大学出版社
ISBN:9787564175184
版次:1
商品编码:12319832
包装:平装
外文名称:High Performance Spark
开本:16开
出版时间:2018-02-01
用纸:胶版纸


相关图书





图书描述

内容简介

本书描述了减少数据基础设施成本和开发时间的技巧,适用于软件工程师、数据工程师、开发者和系统管理员。你不仅可以从中获得关于Spark的全面理解,也将学会如何让它运转自如。

在本书中你将发现:
* Spark SQL的新接口如何在SQL的RDD数据结构上改善性能
* Core Spark和Spark SQL之间的数据拼接选择
* 充分发挥标准RDD转换功能的技巧
* 如何处理Spark的键/值对范式的相关性能问题
* 编写高性能Spark代码,不使用Scala或JVM
* 如何在应用建议的改进措施时测试功能和性能
* 使用Spark MLlib和Spark ML机器学习库
* Spark的流组件和外部社区软件包

作者简介

Holden Karau是一位跨性别加拿大人,在IBM Spark技术中心担任软件开发工程师。她是Spark代码贡献者,并且经常提交贡献代码,特别是PySpark和机器学习部分。Holden在多个国际活动中演讲Spark相关话题。
Rachel Warren是Alpine Data的软件工程师和数据科学家。在日常工作中,她使用Spark来处理真实世界的数据和机器学习问题。她也曾在工业界和学术界担任分析师和导师。

精彩书评

“《高性能Spark》是帮助你实现Apache Spark产品级解决方案的重要资源。由此不仅可以理解重要的Spark优化方法,还有底层的内部细节。”
—— Denny Lee(微软资深项目经理,Azure DocumentDB团队)

目录

Preface
1.Introduction to High Performance Spark
What Is Spark and Why Performance Matters
What You Can Expect to Get from This Book
Spark Versions
Why Scala?
To Be a Spark Expert You Have to Learn a Little Scala Anyway
The Spark Scala API Is Easier to Use Than the lava API
Scala Is More Performant Than Python
Why Not Scala?
Learning Scala
Conclusion

2.How Spark Works
How Spark Fits into the Big Data Ecosystem
Spark Components
Spark Model of Parallel Computing: RDDs
Lazy Evaluation
In-Memory Persistence and Memory Management
Immutability and the RDD Interface
Types of RDDs
Functions on RDDs: Transformations Versus Actions
Wide Versus Narrow Dependencies
Spark Job Scheduling
Resource Allocation Across Applications
The Spark Application
The Anatomy of a Spark lob
The DAG
Jobs
Stages
Tasks
Conclusion

3.DataFrames, Datasets, and Spark SQL
Getting Started with the SparkSession (or HiveContext or SQLContext)
Spark SQL Dependencies
Managing Spark Dependencies
Avoiding Hive JARs
Basics of Schemas
DataFrame API
Transformations
Multi-DataFrame Transformations
Plain Old SQL Queries and Interacting with Hive Data
Data Representation in DataFrames and Datasets
Tungsten
Data Loading and Saving Functions
DataFrameWriter and DataFrameReader
Formats
Save Modes
Partitions (Discovery and Writing)
Datasets
Interoperability with RDDs, DataFrames, and Local Collections
Compile-Time Strong Typing
Easier Functional (RDD "like") Transformations
Relational Transformations
Multi-Dataset Relational Transformations
Grouped Operations on Datasets
Extending with User-Defined Functions and Aggregate Functions (UDFs,UDAFs)
Query Optimizer
Logical and Physical Plans
Code Generation
Large Query Plans and Iterative Algorithms
Debugging Spark SQL Queries
JDBC/ODBC Server
Conclusion

4.Joins (SQL and Core)
Core Spark Joins
Choosing a Join Type
Choosing an Execution Plan
Spark SQL Joins
DataFrame Joins
Dataset Joins
Conclusion

5.Effective Transformations
Narrow Versus Wide Transformations
Implications for Performance
Implications for Fault Tolerance
The Special Case of coalesce
What Type of RDD Does Your Transformation Return?
Minimizing Object Creation
Reusing Existing Objects
Using Smaller Data Structures
Iterator-to-Iterator Transformations with mapPartitions
What Is an Iterator-to-Iterator Transformation?
Space and Time Advantages
An Example
Set Operations
Reducing Setup Overhead
Shared Variables
Broadcast Variables
Accumulators
Reusing RDDs
Cases for Reuse
Deciding if Recompute Is Inexpensive Enough
Types of Reuse: Cache, Persist, Checkpoint, Shuffle Files
Alluxio (nee Tachyon)
LRU Caching
Noisy Cluster Considerations
Interaction with Accumulators
Conclusion

6.Working with Key/Value Data
The Goldilocks Example
Goldilocks Version 0: Iterative Solution
How to Use PairRDDFunctions and OrderedRDDFunctions
Actions on Key/Value Pairs
What's So Dangerous About the groupByKey Function
Goldilocks Version 1: groupByKey Solution
Choosing an Aggregation Operation
Dictionary of Aggregation Operations with Performance Considerations
Multiple RDD Operations
Co-Grouping
Partitioners and Key/Value Data
Using the Spark Partitioner Object
Hash Partitioning
Range Partitioning
Custom Partitioning
Preserving Partitioning Information Across Transformations
Leveraging Co-Located and Co-Partitioned RDDs
Dictionary of Mapping and Partitioning Functions PairRDDFunctions
Dictionary of OrderedRDDOperations
Sorting by Two Keys with SortByKey
Secondary Sort and repartitionAndSortWithinPartitions
Leveraging repartitionAndSortWithinPartitions for a Group by Key and Sort Values Function
How Not to Sort by Two Orderings
Goldilocks Version 2: Secondary Sort
A Different Approach to Goldilocks
Goldilocks Version 3: Sort on Cell Values
Straggler Detection and Unbalanced Data
Back to Goldilocks (Again)
Goldilocks Version 4: Reduce to Distinct on Each Partition
Conclusion

7.Going Beyond Scala
Beyond Scala within the JVM
Beyond Scala, and Beyond the JVM
How PySpark Works
How SparkR Works
Spark.jl (Julia Spark)
How Eclair JS Works
Spark on the Common Language Runtime (CLR)——C# and Friends
Calling Other Languages from Spark
Using Pipe and Friends
JNI
Java Native Access (JNA)
Underneath Everything Is FORTRAN
Getting to the GPU
The Future
Conclusion

8.Testing and Validation
Unit Testing
General Spark Unit Testing
Mocking RDDs
Getting Test Data
Generating Large Datasets
Sampling
Property Checking with ScalaCheck
Computing RDD Difference
Integration Testing
Choosing Your Integration Testing Environment
Verifying Performance
Spark Counters for Verifying Performance
Projects for Verifying Performance
Job Validation
Conclusion

9.Spark MLlib and ML
Choosing Between Spark MLlib and Spark ML
Working with MLlib
Getting Started with MLlib (Organization and Imports)
MLlib Feature Encoding and Data Preparation
Feature Scaling and Selection
MLlib Model Training
Predicting
Serving and Persistence
Model Evaluation
Working with Spark ML
Spark ML Organization and Imports
Pipeline Stages
Explain Params
Data Encoding
Data Cleaning
Spark ML Models
Putting It All Together in a Pipeline
Training a Pipeline
Accessing Individual Stages
Data Persistence and Spark ML
Extending Spark ML Pipelines with Your Own Algorithms
Model and Pipeline Persistence and Serving with Spark ML
General Serving Considerations
Conclusion

10.Spark Components and Packages
Stream Processing with Spark
Sources and Sinks
Batch Intervals
Data Checkpoint Intervals
Considerations for DStreams
Considerations for Structured Streaming
High Availability Mode (or Handling Driver Failure or Checkpointing)
GraphX
Using Community Packages and Libraries
Creating a Spark Package
Conclusion
A.Tuning, Debugging, and Other Things Developers Like to Pretend Don't Exist
Index
高性能Spark(影印版) [High Performance Spark] 下载 mobi epub pdf txt 电子书 格式

高性能Spark(影印版) [High Performance Spark] mobi 下载 pdf 下载 pub 下载 txt 电子书 下载 2024

高性能Spark(影印版) [High Performance Spark] 下载 mobi pdf epub txt 电子书 格式 2024

高性能Spark(影印版) [High Performance Spark] 下载 mobi epub pdf 电子书
想要找书就要到 图书大百科
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

用户评价

评分

评分

评分

评分

评分

评分

评分

评分

评分

类似图书 点击查看全场最低价

高性能Spark(影印版) [High Performance Spark] mobi epub pdf txt 电子书 格式下载 2024


分享链接








相关图书


本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

友情链接

© 2024 book.teaonline.club All Rights Reserved. 图书大百科 版权所有