内容简介
This book, which is in two parts, provides an introduction to the theory of vector- valued functions on Euclidean space. We focus on four main objects of study and in addition consider the interactions between these. Volume I is devoted to differentiation. Differentiable functions on Rn come first, in Chapters 1 through 3. Next, differentiable manifolds embedded in R are discussed, in Chapters 4 and 5. In Volume 11 we take up integration. Chapter 6 deals with the theory of n-dimensional integration over R. Finally, in Chapters 7 and 8 lower-dimensional integration over submanifolds of Rn is developed; particular attention is paid to vector analysis and the theory of differential forms, which are treated independently from each other. Generally speaking, the emphasis is on geometric aspects of analysis rather than on matters belonging to functional analysis.
内页插图
目录
Volume Ⅰ
Preface
Acknowledgments
Introduction
1 Continuity
1.1 Inner product and norm
1.2 Open and closed sets
1.3 Limits and continuous mappings
1.4 Composition of mappings
1.5 Homeomorphisms
1.6 Completeness
1.7 Contractions
1.8 Compactness and uniform continuity
1.9 Connectedness
2 Differentiation
2.1 Linear mappings
2.2 Differentiable mappings
2.3 Directional and partial derivatives
2.4 Chain rule
2.5 Mean Value Theorem
2.6 Gradient
2.7 Higher-order derivatives
2.8 Taylor's formula
2.9 Critical points
2.10Commuting limit operations
3 Inverse Function and Implicit Function Theorems
3.1 Diffeomorphisms
3.2 Inverse Function Theorems
3.3 Applications oflnverse Function Theorems
3.4 Implicitly defined mappings
3.5 Implicit Function Theorem
3.6 Applications of the Implicit Function Theorem
3.7 Implicit and Inverse Function Theorems on C
4 Manifolds
4.1 Introductory remarks
4.2 Manifolds
4.3 Immersion Theorem
4.4 Examples of immersions
4.5 Submersion Theorem
4.6 Examples of submersions
4.7 Equivalent definitions of manifold
4.8 Morse's Lemma
5 Tangent Spaces
5.1 Definition of tangent space
5.2 Tangent mapping
5.3 Examples of tangent spaces
5.4 Method of Lagrange multipliers
5.5 Applications of the method of multipliers
5.6 Closer investigation of critical points
5.7 Gaussian curvature of surface
5.8 Curvature and torsion of curve in R3
5.9 One-parameter groups and infinitesimal generators
5.10 Linear Lie groups and their Lie algebras
5.11 Transversality
Exercises
Review Exercises
Exercises for Chapter 1
Exercises for Chapter 2
Exercises for Chapter 3
Exercises for Chapter 4
Exercises for Chapter 5
Notation
Index
Volume Ⅱ
Preface
Acknowledgments
Introduction
6 Integration
6.1 Rectangles
6.2 Riemann integrability
6.3Jordan measurability
6.4 Successive integration
6.5 Examples of successive integration
6.6 Change of Variables Theorem: formulation and examples
6.7 Partitions of unity
6.8 Approximation of Riemann integrable functions
6.9 Proof of Change of Variables Theorem
6.10 Absolute Riemann integrability
6.11 Application of integration: Fourier transformation
6.12 Dominated convergence
6.13 Appendix: two other proofs of Change of Variables Theorem
7 Integration over Submanifolds
7.1 Densities and integration with respect to density
7.2 Absolute Riemann integrability with respect to density
7.3 Euclidean d-dimensional density
7.4 Examples of Euclidean densities
7.5 Open sets at one side of their boundary
7.6 Integration of a total derivative
7.7 Generalizations of the preceding theorem
7.8 Gauss' Divergence Theorem
7.9 Applications of Gauss' Divergence Theorem
8 Oriented Integration
8.1 Line integrals and properties of vector fields
8.2 Antidifferentiation
8.3 Green's and Cauchy's Integral Theorems
8.4 Stokes' Integral Theorem
8.5 Applications of Stokes' Integral Theorem
8.6 Apotheosis: differential forms and Stokes' Theorem .
8.7 Properties of differential forms
8.8 Applications of differential forms
8.9 Homotopy Lemma
8.10 Poincare's Lemma
8.11 Degree of mapping
Exercises
Exercises for Chapter 6
Exercises for Chapter 7
Exercises for Chapter 8
Notation
Index
前言/序言
拓扑学基础:从点集到函数空间 本书旨在为读者建立一套坚实的拓扑学基础,重点在于深入理解点集拓扑(General Topology)的核心概念、定理及其在现代数学分析中的应用。全书以严谨的数学语言和清晰的逻辑结构组织,力求使读者不仅掌握定义和定理,更能洞察其背后的几何直觉与分析意义。 第一部分:度量空间与基础结构 本书的开篇聚焦于度量空间(Metric Spaces),这是分析学中最基本的结构载体。 第一章:度量与拓扑的起源 我们首先引入度量(Metric)的概念,定义距离函数必须满足的四个基本性质:非负性、同一性、对称性与三角不等式。随后,我们探讨如何从一个度量空间自然地导出拓扑结构。开球(Open Ball)作为拓扑的基础元素被详细讨论,并推广至开集(Open Set)的定义。本章将对开集族的性质进行详尽的论证,包括任意并集和有限交集的性质。 紧接着,我们引入闭集(Closed Set)的对偶概念,并阐述闭集是开集的补集的定义。通过对邻域(Neighborhood)概念的细致分析,我们展示了如何用邻域来重新定义拓扑结构,从而建立拓扑空间(Topological Space)的概念。 第二章:基础拓扑概念的深化 本章深入探讨拓扑空间的内在结构。我们定义了内点(Interior Point)、外点(Exterior Point)和边界点(Boundary Point),并引入了闭包(Closure)和开核(Interior)的正式定义。特别强调了闭包 $ar{A} = A cup A'$ 以及 $ ext{Int}(A) = A setminus partial A$ 等恒等式。 随后,本书详细讨论了稠密子集(Dense Subset)的概念,这对于理解函数的逼近性至关重要。我们考察了可数性(Countability)的概念,包括可数集和可数紧集,并初步引入了第一可数公理(First Countability Axiom)和第二可数公理(Second Countability Axiom),解释了它们在利用点列(Sequences)和可数基(Countable Basis)进行拓扑分析时的重要性。 第二部分:连续性、收敛与连接性 在建立了基础的拓扑框架后,我们转向分析学中最为核心的概念:连续性和收敛性,并引入了连接性来描述空间的“整体性”。 第三章:连续函数与拓扑同胚 本章的核心是连续函数的拓扑定义。我们从度量空间中的 $epsilon-delta$ 语言出发,展示了如何在一般拓扑空间中用开集的像来定义连续性,即$f: X o Y$ 是连续的当且仅当对于 $Y$ 中任意开集 $V$,其原像 $f^{-1}(V)$ 是 $X$ 中的开集。 我们随后探讨了更强的概念:开映射(Open Map)和闭映射(Closed Map)。拓扑同胚(Homeomorphism)被定义为既连续又具有连续逆的映射,它衡量的是两个拓扑空间在结构上的等价性。本章通过大量实例说明了拓扑同胚在几何形状识别中的应用。 第四章:收敛性与滤子(Filters) 在度量空间中,点列收敛是主要工具,但在更一般的拓扑空间中,点列的概念可能不足够。我们首先回顾了点列收敛的拓扑定义。 随后,本书引入了更强大的工具——滤子(Filters)和滤子收敛。滤子提供了处理“网”(Nets)的代数框架,使得在非度量化空间中也能完整描述收敛概念。我们论证了拓扑空间中紧致性、点列紧致性与滤子收敛之间的深刻联系。 第五章:连通性与分离公理 连通性(Connectedness)是描述拓扑空间“不被分割”性质的重要概念。我们定义了连通空间,并证明了连续函数的像保持连通性。路径连通性(Path-Connectedness)作为一种更强的连通性概念被提出,并探讨了在 $mathbb{R}^n$ 中两者等价的原因。 本书的后半部分着重于拓扑空间的“光滑度”或“分离程度”,即分离公理(Separation Axioms)。我们系统地定义并区分了 $T_1, T_2$ (豪斯多夫, Hausdorff), $T_3, T_4$ (正则与完全正则) 公理。特别强调了豪斯多夫空间的重要性,它保证了极限点的唯一性,是后续函数分析的必要前提。 第三部分:紧致性与完备性 紧致性(Compactness)和完备性(Completeness)是泛函分析和微分拓扑学的两大支柱。 第六章:紧致性及其等价命题 紧致性被定义为开有限覆盖的性质。我们首先证明了在 $mathbb{R}^n$ 上的 Heine-Borel 定理,这是紧致性的经典体现。随后,本书详细论证了在一般的拓扑空间中,紧致性与点列紧致性、可数紧致性之间的关系,并明确指出在任意豪斯多夫空间中,紧致性等价于点列紧致性。 紧致性在分析中的核心应用是:连续函数在紧集上能达到其最大值和最小值。本章还讨论了紧集的任意子集的紧致性,以及紧集族(Compact Collections)的性质。 第七章:完备性与巴拿赫不动点定理 完备性关注的是空间中柯西序列的收敛性。我们定义了柯西序列(Cauchy Sequence),并引入了完备度量空间的概念。 本章的重点在于巴拿赫不动点定理(Banach Fixed-Point Theorem),也称压缩映射定理。我们详细推导了该定理的条件、结论和唯一性,并展示了它在求解常微分方程初值问题和迭代方法中的直接应用。 最后,我们探讨了完备化的过程(Completion),即如何将任意度量空间嵌入到一个最小的完备度量空间中(如实数轴对有理数的完备化)。 总结与展望 全书在结构上层层递进,从最直观的度量概念出发,逐步抽象到一般拓扑空间,最终聚焦于保证分析工具(如收敛性、连续性、极限存在性)有效性的关键结构属性——紧致性与完备性。本书为学习更高阶的泛函分析、微分几何以及概率论中的测度论奠定了不可或缺的理论基础。