具体描述
内容简介
Some ten years ago, when completing with J.-B. Zuber a previous text on Quantum Field Theory, the senior author was painfully aware that little mention was made that methods in statistical physics and Euclidean field theory were coming closer and closer, with common tools based on the use of path integrals and the renormalization group giving insights on global structures. It was partly to fill this gap that the present book was undertaken. Alas, over the five years that it took to come to life, both subjects have undergone a new evolution. Disordered media, growth patterns, complex dynamical systems or spin glasses are among the new important topics in statistical mechanics, while superstring theory has turned to the study of extended systems, Kaluza-Klein theories in higher dimensions, anticommuting coordinates ... in an attempt to formulate a unified model including all known interactions. New and sophisticated techniques have invaded statistical physics, ranging from algebraic methods in integrable systems to fractal sets or random surfaces. Powerful computers or special devices provide "experimental" means for a new brand of theoretical physicists. In quantum field theory, applications of differential topology, geometry, Riemannian manifolds, operator theory ... require a deeper background in mathematics and a knowledge of some of its most recent developments. As a result, when surveying what has been included in the present volume in an attempt to uncover the basic unity of these subjects, the authors have the same unsatisfactory feeling of not being able to bring the reader really up to date. It is presumably the fate of such endeavours to always come short of accomplishing their purpose. 目录
Contents of Volume 2
Preface
1 From Brownian motion to Euclidean fields
1.1 Brownian motion
1.1.1 Random walks
1.1.2 The sum over paths
1.1.3 The dimension two of Brownian curves
1.2 Euclidean fields
1.2.1 Free fields
1.2.2 Interacting fields and random walks
1.2.3 Self-avoiding walks and the limit n → 0
1.2.4 Comparison with the high temperature expansion
1.2.5 The one-dimensional case
1.A Lattices
Notes
2 Grassmannian integrals and the two-dimensional Ising model
2.1 Grassmannian integrals
2.1.1 Anticommuting variables
2.1.2 Integrals
2.2 The two-dimensional Ising model
2.2.1 Duality
2.2.2 Transfer matrix
2.2.3 Fermionic representation
2.2.4 Free energy
2.2.5 Spontaneous magnetization
2.2.6 Correlation function in the high temperature phase
2.2.7 Surface tension
2.3 Critical continuous theory
2.3.1 Effective action
2.3.2 Correlation functions
2.A Quadratic differences and Painleve equations Notes
3 Spontaneous symmetry breaking, mean field
3.1 Mean field approximation
3.1.1 Dielectric coastant of a polarizable medium
3.1.2 Classical spin model with a finite symmetry group
3.1.3 Continuous symmetry group
3.1.4 The Bethe approximation
3.1.5 Critical exponents
3.2 Lee-Yang zeroes
3.2.1 The Lee-Yang theorem
3.2.2 The one-dimensional case
3.2.3 General properties
3.2.4 Zeroes in the temperature plane
3.3 Large n limit
3.3.1 Saddle point method
3.3.2 Factorization
3.3.3 Coupling to an external field
3.4 Corrections to mean field
3.4.1 Laplace transform Notes
4 Scaling transformations and the XY-model
4.1 Scaling laws. Real space renormalization
4.1.1 Homogeneity and scale invariance
4.1.2 Recurrence relations in real space
4.1.3 Examples and approximations
4.2 The XY-model
4.2.1 High temperature behaviour
4.2.2 Low temperature expansion. Vortices
4.2.3 The Villain action
4.2.4 Correlations
4.2.5 Renormalization flow
4.A Two-dimensional systems with continuous symmetry
4.A.1 Magnetization inequality
4.A.2 Correlation inequality
4.B Phenomenological renormalization Notes
5 Continuous field theory and the renormalization group
5.1 The Lagrangian and dimensional analysis
5.1.1 Introduction
5.1.2 Generating functionals and dimensional analysis
5.2 The perturbative method
5.2.1 Diagrammatic series
5.2.2 Loop expansion
5.2.3 Evaluation of integrals and dimensional continuation
5.2.4 Group theoretical factors
5.2.5 Power counting
5.2.6 Perturbativc renormalization
5.3 The renormalization group
5.3.1 Renormalization flow
5.3.2 Critical exponents
5.3.3 From the Gaussian ultraviolet fixed point to the infrared critical point in dimension less than four
5.3.4 Correlation functions at the critical point
5.3.5 Expansion near the critical point
5.3.6 Scaling laws below the critical temperature
5.4 Corrections to scaling laws
5.4.1 Deviation from the critical point in dimension lower than four
5.4.2 Logarithmic corrections in dimension four
5.4.3 Irrelevant operators
5.5 Numerical results
5.5.1 e-expansion of critical exponents
5.5.2 Equation of state
5.5.3 Amplitude ratios
5.5.4 Three-dimensional results
5.A Multicritical points Notes
6 Lattice gauge fields
6.1 Generalities
6.1.1 Presentation
6.1.2 The continuous limit
6.1.3 Order parameter and Elitzur''s theorem
6.1.4 Duality
6.2 Structure of the phase diagram
6.2.1 Mean field approximation
6.2.2 Corrections to mean field and restoration of gauge invariance
6.2.3 Discrete groups: 1/d expansion
6.2.4 Continuous groups: computation of corrections
6.3 Strong coupling expansions
6.3.1 Convergence
6.3.2 Character expansions
6.3.3 Free energy
6.3.4 String tension and roughening transition
6.3.5 Mass spectrum
6.4 Lattice fermions
6.4.1 The doubling problem
6.4.2 The Nielsen-Ninomiya theorem
6.4.3 Staggered fermions
Notes
Index 前言/序言
好的,这是一份关于其他主题的、详细且内容丰富的图书简介,字数约1500字,旨在避免提及您提到的特定书籍。 --- 《量子场论:基本原理与应用》 作者: 杜安·哈里斯 (Duane Harris) 出版社: 普林斯顿大学出版社 页数: 850页 装帧: 精装 图书简介: 《量子场论:基本原理与应用》是一部旨在为物理学、数学和理论计算机科学领域的学生及研究人员提供坚实基础的权威性著作。本书深入探讨了量子场论(QFT)的数学结构、物理直觉及其在现代物理学中的广泛应用,尤其侧重于构建非微扰理论、处理拓扑现象以及在凝聚态物理中的新兴应用。 本书的结构设计旨在引导读者从经典场论平稳过渡到严格的量子化过程。第一部分(第1至第4章)致力于奠定基础。我们首先回顾经典场论,包括拉格朗日和哈密顿表述,并详细阐述了规范不变性和诺特定理。随后,重点转向自由场的量子化,首先处理标量场,随后是狄拉克场和电磁场。这里采用了路径积分表述作为核心的理论框架,强调其在处理复杂相互作用时的优势。我们不仅展示了如何从经典作用量推导出费曼规则,还深入讨论了路径积分的数学基础,包括函数空间的测度问题。 第二部分(第5至第9章)是本书的核心,专注于重整化理论和微扰展开。我们详细解析了在量子电动力学(QED)中遇到的无穷大问题,并对维数正则化和最小减法(MS)方案进行了透彻的阐述。理解重整化群(RG)的流程是本部分的关键。我们利用Callan-Symanzik方程和重整化群流的概念,清晰地展示了理论在不同能量尺度下的行为变化,以及有效场论(EFT)的思想如何指导物理模型的构建。此外,我们还专门开辟章节讨论了费曼图的系统性计算,从一阶修正到高阶圈图的解析和数值评估技巧,为读者提供了处理实际计算所需的全部工具。 第三部分(第10至第13章)超越了标准模型框架,探索了量子场论在更前沿领域的应用。拓扑场论(TQFT)是本部分的重要组成部分。我们引入了Chern-Simons理论,探讨了其与低维拓扑不变量(如琼斯多项式)之间的联系。这一部分对于理解拓扑绝缘体和拓扑超导体至关重要。接着,我们转向非阿贝尔规范场论,重点分析了色度和弱相互作用的性质。我们详尽地推导了SU(3)杨-米尔斯理论的场论描述,并讨论了夸克和胶子的囚禁现象,虽然我们主要采用唯象模型,但也简要概述了晶格场论在解决此类问题中的进展。 第四部分(第14至第16章)关注的是现代物理学中量子场论与其他领域的交叉点,特别是凝聚态物理。我们展示了如何将QFT的工具应用于研究多体系统,例如通过玻戈留博夫变换处理超导现象,以及使用Green函数方法处理电子在晶格中的输运性质。重点讨论了非平衡态场论,引入了Keldysh形式,这对于描述实时动力学和耗散系统至关重要。最后,本书以一个深入探讨自发对称性破缺(SSB)和希格斯机制的章节收尾,解释了规范玻色子如何获得质量,以及费米子如何获得质量的过程,这为理解粒子物理学的标准模型奠定了必要的场论基础。 本书的特点在于其严谨的数学推导与清晰的物理图像的结合。每一章都包含大量的例题和延伸阅读材料,旨在鼓励读者主动探索更深入的主题。作者特别注重培养读者对“有效性”和“尺度依赖性”的深刻理解,这是现代理论物理学研究的核心理念。本书适合作为高年级本科生和研究生课程的教材,同时也是领域内研究人员的重要参考工具书。 ---